
Prepared exclusively for Simone Joswig

Beta
Book

Agile publishing for agile developers

The book you’re reading is still under development. As part of our

Beta book program, we’re releasing this copy well before we normally

would. That way you’ll be able to get this content a couple of months

before it’s available in finished form, and we’ll get feedback to make

the book even better. The idea is that everyone wins!

Be warned. The book has not had a full technical edit, so it will con-

tain errors. It has not been copyedited, so it will be full of typos and

other weirdness. And there’s been no effort spent doing layout, so

you’ll find bad page breaks, over-long lines with little black rectan-

gles, incorrect hyphenations, and all the other ugly things that you

wouldn’t expect to see in a finished book. We can’t be held liable if you

use this book to try to create a spiffy application and you somehow

end up with a strangely shaped farm implement instead. Despite all

this, we think you’ll enjoy it!

Throughout this process you’ll be able to download updated PDFs

from your account on http://pragprog.com. When the book is finally

ready, you’ll get the final version (and subsequent updates) from the

same address. In the meantime, we’d appreciate you sending us your

feedback on this book at http://pragprog.com/titles/achbd/errata, or by

using the links at the bottom of each page.

Thank you for being part of the Pragmatic community!

Andy & Dave

Prepared exclusively for Simone Joswig

http://pragprog.com
http://pragprog.com/titles/achbd/errata

The RSpec Book
Behaviour Driven Development

with RSpec, Cucumber, and Friends

David Chelimsky

Dave Astels

Zach Dennis

Aslak Hellesøy

Bryan Helmkamp

Dan North

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Simone Joswig

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-37-9

ISBN-13: 978-1-934356-37-1

Printed on acid-free paper.

B4.0 printing, April 13, 2009

Version: 2009-4-13

Prepared exclusively for Simone Joswig

http://www.pragprog.com

Contents
Important Information for Beta Readers 9

Changes 10

Beta 4.0—April 13, 2009 . 10

Preface 11

I Getting Started with RSpec and Cucumber 12

1 Introduction 13

1.1 Test Driven Development: Where it All Started 13

1.2 Behaviour Driven Development: The Next Step 15

1.3 RSpec . 15

1.4 Cucumber . 16

1.5 The BDD Cycle . 18

2 Describing Features with Cucumber 20

2.1 Selecting Stories for the First Iteration 21

2.2 Deriving Features from Stories 22

2.3 Automating Acceptance Criteria 25

2.4 Steps and Step Definitions 27

2.5 What We Just Did . 34

3 Describing Code with RSpec 35

3.1 Red: Start With a Failing Code Example 38

3.2 Green: Get the Example To Pass 39

3.3 Refactor to Remove Duplication 47

3.4 What We Just Did . 50

Prepared exclusively for Simone Joswig

CONTENTS 6

4 Adding New Features 52

4.1 Scenario Outlines . 53

4.2 Responding to Change 57

4.3 The Simplest Thing . 62

4.4 Examples are Code Too 68

4.5 Exploratory Testing . 73

4.6 What We Just Did . 74

5 Evolving Existing Features 76

5.1 Adding New Scenarios 76

5.2 Managing Increasing Complexity 78

5.3 Refactoring In the Green 80

5.4 What we just did . 86

6 Random Expectations 87

II Behaviour Driven Development 88

7 The Case for BDD 89

7.1 How traditional projects fail 89

7.2 Why traditional projects fail 91

7.3 Redefining the problem 96

7.4 The cost of going Agile 100

7.5 What have we learned? 103

8 Writing Software that Matters 104

9 Mock Objects 105

III RSpec 106

10 Code Examples 107

10.1 Describe It! . 108

10.2 Pending Examples . 113

10.3 Before and After . 115

10.4 Helper Methods . 118

10.5 Shared Examples . 121

10.6 Nested Example Groups 123

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=6

CONTENTS 7

11 Expectations 128

11.1 should and should_not 130

11.2 Built-In Matchers . 131

11.3 Predicate Matchers . 140

11.4 Have Whatever You Like 141

11.5 Operator Expressions . 145

11.6 Generated Descriptions 146

11.7 Subject-ivity . 148

12 Mocking in RSpec 151

13 RSpec and Test::Unit 152

13.1 Running Test::Unit tests with the RSpec runner 153

13.2 Refactoring Test::Unit Tests to RSpec Code Examples . 157

13.3 What We Just Did . 162

14 Tools And Integration 163

14.1 The spec Command . 163

14.2 TextMate . 170

14.3 Autotest . 171

14.4 Heckle . 172

14.5 Rake . 174

14.6 RCov . 175

15 Extending RSpec 177

15.1 Global Configuration . 177

15.2 Custom Example Groups 179

15.3 Custom Matchers . 182

15.4 Macros . 186

15.5 Custom Formatters . 190

15.6 What We’ve Learned . 194

16 Cucumber 195

IV Behaviour Driven Rails 196

17 BDD in Rails 197

17.1 Traditional Rails Development 198

17.2 Outside-In Rails Development 199

17.3 Setting up a Rails project 202

17.4 What We Just Learned 205

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=7

CONTENTS 8

18 Cucumber with Rails 206

18.1 Working with Cucumber in Rails 206

18.2 Step Definition Styles . 209

18.3 Direct Model Access . 210

19 Simulating the Browser with Webrat 220

19.1 Writing Simulated Browser Step Definitions 221

19.2 Navigating to Pages . 228

19.3 Manipulating Forms . 230

19.4 Specifying Outcomes with View Matchers 236

19.5 Building on the Basics 239

19.6 Wrapping Up . 242

20 Automating the Browser with Webrat 244

21 Rails Views 245

21.1 Writing View Specs . 245

21.2 Mocking Models . 251

21.3 Working with Partials . 256

21.4 Refactoring Code Examples 262

21.5 What We Just Learned 266

22 Rails Helpers 268

23 Rails Controllers 269

23.1 Writing Controller Specs 269

23.2 Before Filters . 279

23.3 Spec’ing ApplicationController 285

23.4 Sending Emails . 289

23.5 Custom Macros . 290

23.6 What We Just Learned 295

24 Rails Models 296

A RubySpec 297

B RSpec’s Built-In Expectations 298

C Bibliography 302

Index 303

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=8

Important Information for Beta
Readers

Welcome to The RSpec Beta Book!

RSpec, Cucumber, and Webrat are all under regular development with

frequent releases. The fact that the maintainers of these libraries are

also authors of this book means that you get to learn about the latest

features. In fact, some of the features you’ll learn about are so new,

they have not even been released yet!

For installation instructions for all the library code you need, please see

http://wiki.github.com/dchelimsky/rspec/code-for-the-rspec-book-beta.

Please report any problems you run into installing these gems to The

RSpec Book Forum at http://forums.pragprog.com/forums/95, and any other

sorts of errata to http://www.pragprog.com/titles/achbd/errata.

Thank you so much for participating in our beta program. The feedback

we’ve already received has been invaluable, and is making this a better

book for everbody.

Prepared exclusively for Simone Joswig

http://wiki.github.com/dchelimsky/rspec/code-for-the-rspec-book-beta
http://forums.pragprog.com/forums/95
http://www.pragprog.com/titles/achbd/errata

Changes
Beta 4.0—April 13, 2009

This new release includes a number of improvements per suggestions

submitted by readers,1 as well as two exciting new chapters:

Rails Controllers

Continuing inward on our outside-in journey, this chapter explores

how (and when) to write controller specs. We also introduce approaches

to dealing with some controller-specific spec’ing challenges like filters,

global behaviour defined in ApplicationController, and sending email. See

Chapter 23, Rails Controllers, on page 269.

Extending RSpec

This chapter introduces techniques for extending RSpec to cater to

domain-specific needs. Covered topics include custom example group

classes, custom matchers (including an exciting new matcher definition

DSL), macros and custom formatters. Whether customizing RSpec for

your own app, or in order to ship domain-specific spec’ing extensions

with the libraries you’re releasing, this chapter is filled with really use-

ful information that will help you make your specs easier to write *and*

read. See Chapter 15, Extending RSpec, on page 177.

1. http://www.pragprog.com/titles/achbd/errata

Prepared exclusively for Simone Joswig

http://www.pragprog.com/titles/achbd/errata

Preface
Coming soon

Prepared exclusively for Simone Joswig

Part I

Getting Started with RSpec and

Cucumber

12
Prepared exclusively for Simone Joswig

Chapter 1

Introduction
Behaviour Driven Development began its journey as an attempt to bet-

ter understand and explain the process of Test Driven Development.

Dan North had observed that developers he was coaching were having

a tough time relating to TDD as a design tool and came to the conclu-

sion that it had a lot to do with the word test.

Dave Astels took that to the next step in his seminal article, A New Look

at Test Driven Development,1 in which Dave suggested that even some

experienced TDD’ers were not getting all the benefit from TDD that they

could be getting.

To put this into perspective, perhaps a brief exploration of Test Driven

Development is in order.

1.1 Test Driven Development: Where it All Started

Test Driven Development is a developer practice that involves writing

tests before writing the code being tested. Begin by writing a very small

test for code that does not yet exist. Run the test and, naturally, it fails.

Now write just enough code to make that test pass. No more.

Once the test passes, observe the resulting design and refactor 2 to

remove any duplication you see. It is natural at this point to judge the

design as too simple to handle all of the responsibilities this code will

have.

1. http://techblog.daveastels.com/2005/07/05/a-new-look-at-test-driven-development/

2. Refactoring: improving the design of code without changing its behaviour. From Mar-

tin Fowler’s Refactoring [FBB+99]

Prepared exclusively for Simone Joswig

http://techblog.daveastels.com/2005/07/05/a-new-look-at-test-driven-development/

TEST DRIVEN DEVELOPMENT: WHERE IT ALL STARTED 14

Joe Asks. . .

But what if “the testers” is me?

Not all project teams have a separate tester role. On teams
that don’t, the notion of pushing off the responsibility of testing
practices to other people doesn’t really fly. In cases like this, it’s
still helpful to separate testing practices from TDD.

When you’re wearing your TDD hat, focus on
red/green/refactor, design and documentation. Don’t think
about testing. Once you’ve developed a body of code, put
on your tester hat, and think about all the things that could go
wrong. This is where you add all the crazy edge cases, using
exploratory testing to weed out the nasty bugs hiding in the
cracks, documenting them as you discover them with more
code examples.

Instead of adding more code, document the next responsibility in the

form of the next test. Run it, watch it fail, write just enough code to get

it to pass, review the design and remove duplication. Now add the next

test, watch it fail, get it to pass, refactor, etc, etc, etc.

Emergent Design

As the code base gradually increases in size, more and more attention is

consumed by the refactoring step. The design is constantly evolving and

under constant review, though it is not pre-determined. This process

is known as emergent design, and is one of the most significant by-

products of Test Driven Development.

This is not a testing practice at all. Instead, the goal of TDD is to deliver

high quality code to testers, but it is the testers who are responsible for

testing practices (see the Joe Asks. . . on this page).

And this is where the Test in TDD becomes a problem. Specifically,

it is the idea of Unit Testing that often leads new TDD’ers to verifying

things like making sure that a register() method stores a Registration in

a Registry’s registrations collection, and that collection is specifically an

Array.

This sort of detail in a test creates a dependency in the test on the inter-

nal structure of the object being tested. This dependency means that if

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=14

BEHAVIOUR DRIVEN DEVELOPMENT: THE NEXT STEP 15

other requirements guide us to changing the Array to a Hash, this test

will fail, even though the behaviour of the object hasn’t changed. This

brittleness can make test suites much more expensive to maintain, and

is the primary reason for test suites to become ignored and, ultimately,

discarded.

So if testing internals of an object is counter-productive in the long run,

what should we focus on when we write these tests first?

1.2 Behaviour Driven Development: The Next Step

The problem with testing an object’s internal structure is that we’re

testing what an object is instead of what it does. What an object does

is significantly more important.

Think of this at the application level. When is the last time you had a

conversation with a business analyst who said “when a customer places

an order, the order should be stored in an ANSI-compliant relational

database”? More likely, he said something like “when a customer places

an order, it should be stored in the database.” And by the database

he was using a generic metaphor for some sort of persistent storage

mechanism.

Of course you may have a more technically savvy business analyst

who actually understands the technical differences and implications

of ANSI-compliance and relational databases vs object and document

databases, etc. But he probably doesn’t care about which one you

choose as much as whether the person who processes orders can recall

that data in order to do his job.

At the object level, the fact that a Registry uses an Array instead of a Hash

or some other data structure to store registrations is not important.

What is important is that you can ask a Registry to store a registration

and you can retrieve that registration later. Whether we’re specifying

applications or objects, the real value lies in the behaviour, not the

structural details.

1.3 RSpec

RSpec was created by Steven Baker in 2005, inspired by Dave’s afore-

mentioned article. One of Dave’s suggestions was that with languages

like Smalltalk and Ruby, we could more freely explore new frameworks

that could encourage focus on behaviour.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=15

CUCUMBER 16

While the syntactic details have evolved since Steven’s original version

of RSpec, the basic premise remains. We use RSpec to write executable

examples of the expected behaviour of a small bit of code in a controlled

context. Here’s how that might look:

describe MovieList do

context "when first created" do

it "should be empty" do

movie_list = MovieList.new

movie_list.should be_empty

end

end

end

The it() method creates an example of the behaviour of a MovieList, with

the context being that the MovieList was just created. The expression

movie_list.should be_empty should be self-explanatory. Just read it out

loud. You’ll see how be_empty() interacts with the movie_list in Sec-

tion 11.3, Predicate Matchers, on page 140.

Running this code in a shell with the spec command yields the following

specification:

MovieList when first created

- should be empty

Add some more contexts and examples, and the resulting output looks

even more like a specification for a MovieList object:

MovieList when first created

- should be empty

MovieList with 1 item

- should not be empty

- should include that item

Of course, we’re talking about the specification of an object, not nec-

essarily a whole system. You could specify application behaviour with

RSpec. Many do. Ideally, however, for specifying application behaviour,

we want something that communicates in broader strokes. And for that,

we use Cucumber.

1.4 Cucumber

Cucumber is a BDD tool that reads plain text descriptions of applica-

tion features with example scenarios, and uses the scenario steps to

automate interaction with the code being developed. For example:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=16

CUCUMBER 17

Cucumber Seeds

Even before we had started exploring structures and syntax
for RSpec, Dan North had been exploring a completely differ-
ent model for a BDD tool. He wanted to document and drive
behaviour in a simplified language that could be easily under-
stood by customers, developers, testers, business analysts, etc,
etc. The early result of that exploration was the JBehave library,
which is still in active use and development.

Dan ported JBehave to Ruby as RBehave, and we merged it
into RSpec as the Story Runner. It only supported scenarios writ-
ten in Ruby at first, but we later added support for plain text,
opening up a whole new world of expressiveness and access.
But as new possibilities were revealed, so were limitations.

In the spring of 2008, Aslak Hellesøy set out to rewrite RSpec’s
Story Runner with a real grammar defined with Nathan Sobo’s
Treetop library. Aslak dubbed it Cucumber at the suggestion
of his fiancée, Patricia Carrier, thinking it would be a short-lived
working title until it was merged back into RSpec. Little did either
of them know that Cucumber would develop a life of its own.

Line 1 Feature: pay bill on-line
- In order to reduce the time I spend paying bills
- As a bank customer with a checking account
- I want to pay my bills on-line
5

- Scenario: pay a bill
- Given checking account with $50
- And a payee named Acme
- And an Acme bill for $37

10 When I pay the Acme bill
- Then I should have $13 remaining in my checking account
- And the payment of $37 to Acme should be listed in Recent Payments

Plain text scenarios like this one are parsed and treated as real code,

providing invaluable benefits like backtraces that emanate from the

plain text steps, and support for multiple languages.

Everything up to and including the Scenario declaration on line 6 is

treated as documentation (not executable). The subsequent lines are

steps in the scenario. In the next chapter, you’ll be writing step def-

initions in Ruby. These step definitions interact with the code being

developed, and are invoked by Cucumber as it reads in the scenario.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=17

THE BDD CYCLE 18

Don’t worry if that doesn’t make perfect sense to you just yet. For right

now it’s only important to understand that both RSpec and Cucumber

allow us to specify the behaviour of code with examples that are pro-

grammatically tied to the system. The details will become clear as you

read on.

1.5 The BDD Cycle

We typically use Cucumber to describe behaviour of the application

from the outside and RSpec to describe the behaviour of its component

parts.3 If you’ve ever done TDD before, you’re probably familiar with

the red/green/refactor cycle. With the addition of a higher level tool

like Cucumber, we’ll actually have two concentric red/green/refactor

cycles, as depicted in Figure 1.1, on the following page.

Both cycles involve taking small steps and listening to the feedback

you get from the tools. We start with a failing step (red) in Cucumber

(the outer cycle). To get that step to pass, we’ll drop down to RSpec

(the inner cycle) and drive out the underlying code at a granular level

(red/green/refactor).

At each green point in the RSpec cycle, we’ll check the Cucumber cycle.

If it is still red, the resulting feedback should guide us to the next action

in the RSpec cycle. If it is green, we can jump out to Cucumber, refac-

tor if appropriate, and then repeat the cycle by writing a new failing

Cucumber step.

This will all become clear as you read through these chapters.

In the tutorial that follows, we’ll be using a number of features in

Cucumber and RSpec. In most cases we’ll only touch the surface of

a feature, covering just enough to be able to use it as needed for this

project, with references to other places in the book that you can go to

learn more of the detail and philosophy behind each feature.

So now it’s time to grab some coffee, clear your head, leave your pre-

conceptions at the door and get ready to get your BDD on. See you

in the next chapter, in which we’ll begin to drive out a command line

version of the classic logic game, Mastermind.

3. Although we use Cucumber to focus on high level behaviour and RSpec on more

granular aspects of behaviour, each can be used for either purpose.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=18

THE BDD CYCLE 19

greenrefactor

red

green

red

refactor

1

2

3

4

5

6

7

Cucumber

RSpec

1

2

Focus on one scenario

Write failing step definition

(drop down to RSpec)

3

4

5

Get the spec to pass

Refactor

Write failing spec

Repeat #3 - #5 for discovered
objects

7 Refactor

(when step is passing)

6

(start with Cucumber)

Repeat #2 - #7
until Scenario

is passing

Repeat #1 - #7
when Scenario
is all passing

Figure 1.1: The BDD Cycle

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=19

Chapter 2

Describing Features with
Cucumber

To get started with RSpec and Cucumber, we’re going to write a simple

command line version of the classic board game, Mastermind.

The game of Mastermind involves two players: the code-maker and the

code-breaker. The job of the code-breaker is to deduce a secret code

made up of four colored pegs chosen by the code-maker. The pegs come

in six different colors: B=Black, C=Cyan, G=Green, R=Red, Y=Yellow,

W=White.

The game is usually played on a board that looks like the one depicted

in Figure 2.1, on the next page. The code-maker chooses a secret code

and places pegs in the row on the left, which gets covered from view

of the code-breaker. The code-breaker gets some number of chances

(typically ten) to break the code. In each turn, the code-breaker takes

a guess at the code, placing 4 of the colored pegs in a row. The code-

maker then marks the guess using smaller black and white marker

pegs.

A black marker indicates that one of the colored pegs in the guess is

the right color and in the right position, but does not reveal which one.

A white marker indicates that one of the pegs in the guess is of a color

which is in the solution (again without revealing which one), but is in

the wrong position. For example, if the score is 2 black pegs and 1

white, then we know that the guess has three colored pegs that are

part of the code and two of them are actually in the right positions.

Prepared exclusively for Simone Joswig

SELECTING STORIES FOR THE FIRST ITERATION 21

Code
Maker

Code
Breaker

secret code first guess

score for first guess

Figure 2.1: Mastermind

2.1 Selecting Stories for the First Iteration

We’re going to develop the Mastermind game in short iterations using

automated scenarios and code examples to drive out the code. To get

started we’ll need an initial set of User Stories from which to pick our

first iteration. Here are some titles to get us started:

• Code-breaker starts game

• Code-breaker submits guess

• Code-breaker wins game

• Code-breaker loses game

• Code-breaker plays again

Note how each of these indicate the code-breaker role. We like to express

stories in terms of a specific role (not just a generic user) because that

impacts how we think about the requirement and why we’re implement-

ing code to satisfy it.

Let’s start with the “Code-breaker starts game” and “Code-breaker sub-

mits guess” stories for the first iteration. We’ll need a narrative for each

story, and then some scenarios that we’ll automate with Cucumber,

and we’re going to need a place to put them. Let’s go ahead and get the

project set up.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=21

DERIVING FEATURES FROM STORIES 22

Focus on the Role

I heard Mike Cohn, author of User Stories Applied [Coh04], talk
about focusing on the role when writing User Stories at the Agile
2006 Conference. The example he gave was that of an airline
reservation system, pointing out that the regular business trav-
eler booking a flight wants very different things from such a sys-
tem than the occasional vacation traveler.

Think about that for a minute. Imagine yourself in these two dif-
ferent roles and the different sorts of details you would want
from such a system based on your goals. For starters, the
business traveler might want to maintain a profile of regular
itineraries, while the vacationer might be more interested in
finding package deals that include hotel and car at a discount.

Focusing on this distinction is a very powerful tool in getting
down to the details of the features required of a system.

Figure 2.2, on the following page, shows the conventional layout with

bin, features, lib, and spec directories at the root of the project. lib/mastermind.rb

will be responsible for requiring the source files in the lib/mastermind

directory.

features/support/env.rb and spec/spec_helper.rb will each be responsible

for requiring lib/mastermind.rb, ensuring that the necessary source files

are loaded when executing Cucumber scenarios and RSpec code exam-

ples. We’ll talk about features/step_definitions after we’ve written out a

couple of scenarios.

Following convention, we’ll build a parallel structure below lib/mastermind

and spec/mastermind. For example, in this chapter we’ll describe the

behaviour of Game in spec/mastermind/game_spec.rb and we’ll put its

class definition in lib/mastermind/game.rb. But before we get there, we

need to write out some scenarios.

2.2 Deriving Features from Stories

If you’re familiar with Cucumber’s predecessor, RSpec’s Story Runner

(which, itself, succeeded RBehave), you may have seen scenarios orga-

nized by User Stories in Story files in a stories directory. We had some

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=22

DERIVING FEATURES FROM STORIES 23

mastermind

features

step_definitions

support

lib

spec

mastermind.rb

mastermind.rb

env.rb

spec_helper.rb

bin

mastermind

mastermind

mastermind

Figure 2.2: Project Structure

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=23

DERIVING FEATURES FROM STORIES 24

Joe Asks. . .

Shouldn’t we avoid a 1-to-1 mapping?

Perhaps you’ve heard that a 1-to-1 mapping between objects
and their specs is a BDD no-no. There is some truth to this, but
the devil is in the details.

We want to avoid a strict adherence to a structure in which
every object has a single example group, and every method
has a single code example. That sort of structure leads to
long examples that take an object through many phases, set-
ting expectations at several stopping points in each example.
Examples like these are difficult to write to begin with, and much
more difficult to understand and debug later.

A 1-to-1 mapping of spec-file to subject-file, however, is not only
perfectly fine, it is actually beneficial. It makes it easier to under-
stand where to find the specs for code you might be looking
at. It also makes it easier for tools to automate shortcuts like the
one in The RSpec TextMate bundle, which switches between
spec-file and subject-file with CTRL-SHIFT-DOWN.

debate about this within the BDD community and when Cucumber

came around, it took the side of Stories In, Features Out.

The idea is that we use stories for planning and estimation, and we talk

about which stories we’re going to do in which iterations. But once we

deliver working code it is more natural to talk about code in terms of

features rather than stories. And since stories in later iterations can

lead to enhancements of existing features, it’s much easier to keep

things organized by feature and just add new scenarios to the exist-

ing features.

Cucumber features have three parts to them: a title, a brief narrative,

and an arbitrary number of scenarios which serve as our acceptance

criteria.

Here’s what the title and narrative for the “code-breaker starts game”

feature might look like:

Download mm/01/features/codebreaker_starts_game.feature

Feature: code-breaker starts game

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/01/features/codebreaker_starts_game.feature
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=24

AUTOMATING ACCEPTANCE CRITERIA 25

As a code-breaker

I want to start a game

So that I can break the code

The title is just enough to remind us who the feature is for, the code-

breaker, and what the feature is about, starting a game. Although the

narrative is free-form, we generally follow a variation of the Connextra

format described in the (as yet) unwritten sec.narrative.

With that narrative, we have a slightly better understanding of what we

want to do with the system, but how will we know when we’ve started

the game? How will we know when we’ve satisfied this requirement?

How will we know when we’re done?

2.3 Automating Acceptance Criteria

To answer these questions, we’ll add acceptance criteria to the feature.

Imagine that you sit down to play mastermind, you fire up a shell, and

type the mastermind command. How do you know it started? Perhaps it

says something like “Welcome to Mastermind!” And then, so you know

what to do next, it probably says something like “Enter a guess:”

That will be the acceptance criteria for this feature. To express that with

Cucumber, modify features/codebreaker_starts_game.feature so it reads

like this:

Download mm/01/features/codebreaker_starts_game.feature

Feature: code-breaker starts game

As a code-breaker

I want to start a game

So that I can break the code

Scenario: start game

Given I am not yet playing

When I start a new game

Then the game should say "Welcome to Mastermind!"

And the game should say "Enter guess:"

The Scenario: keyword is followed by a string and then a series of steps.

Each step begins with any of five keywords: Given, When, Then, And

and But.

Given steps represent the state of the environment before an event.

When steps represent the event. Then steps represent the expected out-

comes.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/01/features/codebreaker_starts_game.feature
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=25

AUTOMATING ACCEPTANCE CRITERIA 26

And and But steps take on the quality of the previous step. In the start

game scenario, the And step is a second Then, a second expected out-

come. If we wanted to expect that the game says “Welcome to Master-

mind!”, but not “What is your quest?”, we would add a But step saying

But the game should not say “What is your quest?”, which would be

treated as a Then.

See how the Given and When steps in this scenario both use the first

person? We choose the first person form because it makes the narrative

feel more compelling. Given x, when I y, then I should see a message

saying “z.” This helps to keep the focus on how I would use the system

if I were in a given role (the code breaker).

“Given I am not yet playing” expresses the context in which the subse-

quent steps will be executed. “When I start a new game” is the event or

action that occurs because I did something. The Thens are the expected

outcomes—what we expect to happen after the When.

To run the feature and see the result, cd to the mastermind directory in

a command shell and run cucumber features -n.1 You should see output

like this:

Feature: code-breaker starts game

As a code-breaker

I want to start a game

So that I can break the code

Scenario: start game

Given I am not yet playing

When I start a new game

Then the game should say "Welcome to Mastermind!"

And the game should say "Enter guess:"

1 scenario

4 undefined steps

You can implement step definitions for missing steps with these snippets:

Given /^I am not yet playing$/ do

pending

end

When /^I start a new game$/ do

1. This, of course, assumes that you’ve already installed the cucumber gem. If you

haven’t, simply gem install cucumber (with sudo for some environments). And while you’re

at it, go ahead and gem install rspec and you’ll have everything you need to get through this

chapter.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=26

STEPS AND STEP DEFINITIONS 27

pending

end

Then /^the game should say "Welcome to Mastermind!"$/ do

pending

end

Then /^the game should say "Enter guess:"$/ do

pending

end

In addition to printing out the title, narrative, and steps in the scenario,

a summary tells us that each of the four steps are pending definition.

This is followed by code snippets for each pending step. Not only do we

know what to do next, we even have a little help getting started with

writing step definitions, which we’ll explain next.

2.4 Steps and Step Definitions

Now that we have some pending steps, we need to write step definitions

for them. If you think of the steps in scenarios as method calls, then

step definitions are like method definitions. In Ruby, when you call

a method that is not defined, you get a NoMethodError. In Cucumber,

you get notification of a pending step, which you can think of as an

undefined step.

The first pending step is Given I am not yet playing, and Cucumber gave

us this snippet to get that started:

Given /^I am not yet playing$/ do

end

Go ahead and create a mastermind.rb file in features/step_definitions/ and

add that snippet to it. Now run cucumber features -n from the project

root, and you’ll see the following output:

Feature: code-breaker starts game

As a code-breaker

I want to start a game

So that I can break the code

Scenario: start game

Given I am not yet playing

When I start a new game

Then the game should say "Welcome to Mastermind!"

And the game should say "Enter guess:"

1 scenario

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=27

STEPS AND STEP DEFINITIONS 28

3 undefined steps

1 passed step

You can implement step definitions for missing steps with these snippets:

When /^I start a new game$/ do

pending

end

Then /^the game should say "Welcome to Mastermind!"$/ do

pending

end

Then /^the game should say "Enter guess:"$/ do

pending

end

Now we have 1 passing step and 3 steps pending implementation.

So what just happened? When Cucumber parses a feature, it tries

to match all of the steps in scenarios with step definitions written in

Ruby. Steps are defined by calling any of three methods provided by

Cucumber: Given(), When(), or Then(). In this case, we called the Given()

method, passing it a Regexp and a block.

When Cucumber sees a step definition, it stores the block in a hash-like

structure with the Regexp as its key. Then, for each step in a feature

file, it searches for a Regexp that matches the step, and executes the

block stored with that Regexp as its key.

In our case, when Cucumber sees the Given I am not yet playing step in

the scenario, it strips off the Given and looks for a Regexp that matches

the string I am not yet playing. At this point we only have one step defi-

nition, and its Regexp is /∧I am not yet playing$/, so Cucumber executes

the associated block from the step definition.

Of course, since there is nothing in the block yet, there is nothing that

can go wrong, so the step is considered passing. As it turns out, that’s

exactly what we want in this case. We don’t actually want Given I am

not yet playing to do anything. We just want it in the scenario to provide

context for the subsequent steps, but we’re going to leave the associated

block empty.

The When is where the action is. We need to create a new game and

then start it. Here’s what that might look like:

Download mm/02/features/step_definitions/mastermind.rb

When /^I start a new game$/ do

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/02/features/step_definitions/mastermind.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=28

STEPS AND STEP DEFINITIONS 29

The Code You Wish You Had

In my early days at Object Mentor I attended a TDD class being
taught by James Grenning. As he was talking about refactoring
a Long Method, he wrote a statement that called a method
that didn’t exist yet, saying something like “start by writing the
code you wish you had.”

This was a galvanizing moment for me.

It is common to write the code we wish we had doing TDD. Per-
haps we send a message from the code example to an object
that does not have a corresponding method. We let the Ruby
interpreter tell us that the method does not exist (red), and then
implement that method (green).

Doing the same thing within application code, calling the code
we wish we had in one module from another module, was a
different matter. It was as though an arbitrary boundary was
somehow lifted and suddenly all of the code was my personal
servant, ready and willing to bend to my will. It didn’t matter
whether we were starting in a test, or in the code being tested.
What mattered was that we started from the view of the code
that was going to use the new code we were about to write.

Over the years this has permeated my daily practice. It is very,
very liberating, and results consistently in more usable APIs than
I would have come up with starting with the object receiving
the message.

In retrospect, this also aligns closely with the Outside-In philos-
ophy of BDD, perhaps taking it a step further. If the goal is to
provide great APIs then the best place to design them is from
their consumers.

Mastermind::Game.new.start

end

At this point we don’t have any application code, so we’re just writing

the code we wish we had. We want to keep it simple, and this is about

as simple as it can get.

Now let’s move on to the Thens.

Download mm/02/features/step_definitions/mastermind.rb

Then /^the game should say "Welcome to Mastermind!"$/ do

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/02/features/step_definitions/mastermind.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=29

STEPS AND STEP DEFINITIONS 30

end

Then /^the game should say "Enter guess:"$/ do

end

They are both pretty much the same except for the strings, and since

we’re dealing with regular expressions we can generalize them into a

single definition like this:

Download mm/03/features/step_definitions/mastermind.rb

Then /^the game should say "(.*)"$/ do |message|

end

This step definition will handle both the Then and And steps in the sce-

nario, passing whatever is captured to the block as the message param-

eter.

As for what to write in the blocks, we need to have some way of knowing

what message was returned when we sent start() to the Game object so

we can specify that it matches the value of the block argument. Here’s

one way to handle this:

Download mm/04/features/step_definitions/mastermind.rb

When /^I start a new game$/ do

game = Mastermind::Game.new

@message = game.start

end

Then /^the game should say "(.*)"$/ do |message|

@message.should == message

end

Here we store the return value of @game.start in a variable named @mes-

sage in the When step definition. The code in the Then step borrows

from RSpec to set an expectation about the value of the @message vari-

able. You’ll read all about RSpec’s expectations in Chapter 11, Expecta-

tions, on page 128, and learn how to make them available to Cucumber

step definitions later in the chapter.

In this case, we expect that @message should equal (using Ruby’s ==()

method) the message from the step in the scenario. This is RSpec’s way

of setting expectations about equality.

But there’s a problem with this setup. Can you see what it is? Take a

look at the story we’re working on again. How many times do we invoke

Then the game should say:? Twice in this scenario! We are expecting

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/03/features/step_definitions/mastermind.rb
http://media.pragprog.com/titles/achbd/code/mm/04/features/step_definitions/mastermind.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=30

STEPS AND STEP DEFINITIONS 31

two different messages to appear when we start the game. Time to make

a design decision.

We need another approach. We could have the start() method return an

array of messages and expect the array to contain the message we’re

interested in. That might look like this:

Download mm/05/features/step_definitions/mastermind.rb

When /^I start a new game$/ do

game = Mastermind::Game.new

@messages = game.start

end

Then /^the game should say "(.*)"$/ do |message|

@messages.should include(message)

end

That could work, but let’s take a step back for a second. How are we

going to invoke this? What’s the outermost layer of our system going to

be? It’s going to be a Ruby script. And we’re going to want to keep that

as lightweight as possible. Here’s what it might have to look like if we

went with this approach:

Download mm/05/bin/mastermind

#!/usr/bin/env ruby

$LOAD_PATH.push File.join(File.dirname(__FILE__), "/../lib")

require 'mastermind'

game = Mastermind::Game.new

messages = game.start

messages.each { puts message }

If we return an array of messages, then the script needs to take on some

of the responsiblity of what to display, and when to display it. Among

other problems, this is a violation of the Single Responsibility Principle

[Mar02].

One solution to that violation would be to have the script hand the game

STDOUT and have it post messages to that. The game wouldn’t need to

know it was STDOUT. It would just need to know it was something it

could send messages to. If we did that, the mastermind script might

look like this instead:

Download mm/06/bin/mastermind

#!/usr/bin/env ruby

$LOAD_PATH.push File.join(File.dirname(__FILE__), "/../lib")

require 'mastermind'

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/05/features/step_definitions/mastermind.rb
http://media.pragprog.com/titles/achbd/code/mm/05/bin/mastermind
http://media.pragprog.com/titles/achbd/code/mm/06/bin/mastermind
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=31

STEPS AND STEP DEFINITIONS 32

game = Mastermind::Game.new(STDOUT)

game.start

Much better! If you’re a *nix user, go ahead and copy that into bin/mastermind,

and chmod 755 bin/mastermind so you’ll be able to execute it later.

Windows users should copy all but the very first line into bin/mastermind,

and also add bin/mastermind.bat with the following:

Download mm/06/bin/mastermind.bat

@"ruby.exe" "%~dpn0" %*

The next question is how to express this design decision in the step def-

inition? We don’t want to use STDOUT because Cucumber is using STDOUT

to report results when we run the scenarios. We do want something that

shares an interface with STDOUT so that the Game object won’t know the

difference.

This is one of those occasions in which Ruby provides a solution that

is so simple, it’s difficult to stop yourself from chuckling. STDOUT is an

instance of IO. The StringIO object is very much like an IO object. We can

use one of those, have it store the messages and set our expectations

on it like so:

Download mm/06/features/step_definitions/mastermind.rb

When /^I start a new game$/ do

@messenger = StringIO.new

game = Mastermind::Game.new(@messenger)

game.start

end

Then /^the game should say "(.*)"$/ do |message|

@messenger.string.split("\n").should include(message)

end

That’s a tiny bit more complex, but it’s still straightforward.

Now that we’ve implemented the code in the step definitions, let’s run

the code-breaker starts game feature and see what we’ve got. Go back to

the command shell and run cucumber features -n again and you should

see output like this:

Feature: code-breaker starts game

As a code-breaker

I want to start a game

So that I can break the code

Scenario: start game

Given I am not yet playing

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/06/bin/mastermind.bat
http://media.pragprog.com/titles/achbd/code/mm/06/features/step_definitions/mastermind.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=32

STEPS AND STEP DEFINITIONS 33

When I start a new game

uninitialized constant Mastermind (NameError)

./06/features/step_definitions/mastermind.rb:7:in

`/^I start a new game$/'

06/features/codebreaker_starts_game.feature:10:in

`When I start a new game'

Then the game should say "Welcome to Mastermind!"

And the game should say "Enter guess:"

1 scenario

1 failed step

2 skipped steps

1 passed step

There is no application code yet, so we’re getting a NameError on Master-

mind. Take a look at the backtrace.

The first line of the backtrace is from features/step_definitions/mastermind.rb,

the file with the step definitions in it. It’s a Ruby file, and we’d expect

that to show up. But check out the second line. It’s from features/codebreaker_starts_game.feature,

a file written in plain text.2

We also see that one step passed (the Given), one failed (the When), and

two are skipped (the Thens). When a step fails, all of the subsequent

steps are skipped because whether they pass or fail is not necessarily

meaningful, as the state is not what you expect it to be.

This is useful feedback, but we can get even more by running the fea-

ture without the -n flag; just run cucumber features.3 You should see

output like this:

Feature: code-breaker starts game

As a code-breaker

I want to start a game

So that I can break the code

Scenario: start game

06/features/codebreaker_starts_game.feature:8

Given I am not yet playing

06/features/step_definitions/mastermind.rb:1

When I start a new game

06/features/step_definitions/mastermind.rb:5

uninitialized constant Mastermind (NameError)

./06/features/step_definitions/mastermind.rb:7:in

`/^I start a new game$/'

2. Cucumber can do this because it is built on top of Treetop, a library for building

grammars in Ruby.

3. Run cucumber --help to see a full listing of Cucumber’s command line options

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=33

WHAT WE JUST DID 34

06/features/codebreaker_starts_game.feature:10:in

`When I start a new game'

Then the game should say "Welcome to Mastermind!"

06/features/step_definitions/mastermind.rb:11

And the game should say "Enter guess:"

06/features/step_definitions/mastermind.rb:11

1 scenario

1 failed step

2 skipped steps

1 passed step

Now we see file names and line numbers for the scenario (from the

feature file), and each step (from the step definition file). This makes it

quite easy to see where to go when things go wrong.

It would be most tempting at this point to simply define the Master-

mind::Game class with a stub implementation of the start() method, but

let’s stop and reassess.

2.5 What We Just Did

At this point we’ve made our way through the second step in the con-

centric cycles described in Section 1.5, The BDD Cycle, on page 18: we

now have a failing cucumber step. And we’ve also laid quite a bit of

foundation.

We’ve set up the development environment for the Mastermind game,

with the standard directories for Cucumber and RSpec. We expressed

the first feature from the outside using Cucumber, with automatable

acceptance criteria using the simple language of Given/When/Then.

So far we’ve been describing things from the outside with Cucumber. In

the next chapter we’ll begin to work our way from the Outside-In, using

RSpec to drive out behaviour of individual objects.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=34

Chapter 3

Describing Code with RSpec
In the last chapter, we introduced and used Cucumber to describe the

behaviour of our Mastermind game from the outside, at the application

level. We wrote a Cucumber feature with a scenario and step definitions

that will handle the steps in the scenario, but we’re getting an error. The

code in a step definition is trying to interact with a Mastermind::Game

object, but there is no application code to support this yet.

In this chapter we’re going to use RSpec to describe behaviour at a

much more granular level: the expected behaviour of instances of the

Game class.

To get going, create a file named game_spec.rb in spec/mastermind/ and

add the following code:

Download mm/06/spec/mastermind/game_spec.rb

module Mastermind

describe Game do

end

end

The describe() method hooks into RSpec’s API, and it returns a Spec::ExampleGroup,

which is, as it suggests, a group of examples—examples of the expected

behaviour of an object. If you’re accustomed to xUnit tools like Test::Unit,

you can think of an ExampleGroup as being akin to a TestCase.

Open up a shell and cd to the mastermind directory and run the game_spec.rb

file with the spec command, 1 like this:

spec spec/mastermind/game_spec.rb

1. The spec command is installed when you install the rspec gem.

Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/06/spec/mastermind/game_spec.rb

CHAPTER 3. DESCRIBING CODE WITH RSPEC 36

The resulting output should include “uninitialized constant Master-

mind::Game (NameError)” To fix that we need to do a few things. First,

add a file named game.rb with the following code in the lib/mastermind

directory:

Download mm/07/lib/mastermind/game.rb

module Mastermind

class Game

end

end

Then we require that file from lib/mastermind.rb:

Download mm/07/lib/mastermind.rb

require 'mastermind/game'

Next, the spec helper needs to add the lib directory to the load path and

then require mastermind and spec:

Download mm/07/spec/spec_helper.rb

$: << File.join(File.dirname(__FILE__), "/../lib")

require 'spec'

require 'mastermind'

Lastly we need to require spec_helper.rb from game_spec.rb, which should

then look like this:

Download mm/07/spec/mastermind/game_spec.rb

require File.join(File.dirname(__FILE__), "/../spec_helper")

module Mastermind

describe Game do

end

end

Now run game_spec.rb with the spec command again. You should see

output like this:

Finished in 0.001545 seconds

0 examples, 0 failures

This tells us that everything is hooked up correctly and we can move

on. To see where we are in relation to our feature, add the lib directory

to the load path and require mastermind in features/support/env.rb:

Download mm/07/features/support/env.rb

$: << File.join(File.dirname(__FILE__), "/../../lib")

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/07/lib/mastermind/game.rb
http://media.pragprog.com/titles/achbd/code/mm/07/lib/mastermind.rb
http://media.pragprog.com/titles/achbd/code/mm/07/spec/spec_helper.rb
http://media.pragprog.com/titles/achbd/code/mm/07/spec/mastermind/game_spec.rb
http://media.pragprog.com/titles/achbd/code/mm/07/features/support/env.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=36

CHAPTER 3. DESCRIBING CODE WITH RSPEC 37

require 'mastermind'

Running features/codebreaker_starts_game.feature gives us a different error

now:

Feature: code-breaker starts game

As a code-breaker

I want to start a game

So that I can break the code

Scenario: start game

07/features/codebreaker_starts_game.feature:8

Given I am not yet playing

07/features/step_definitions/mastermind.rb:1

When I start a new game

07/features/step_definitions/mastermind.rb:5

wrong number of arguments (1 for 0) (ArgumentError)

./07/features/step_definitions/mastermind.rb:7:in `initialize'

./07/features/step_definitions/mastermind.rb:7:in `new'

./07/features/step_definitions/mastermind.rb:7:in

`/^I start a new game$/'

07/features/codebreaker_starts_game.feature:10:in

`When I start a new game'

Then the game should say "Welcome to Mastermind!"

07/features/step_definitions/mastermind.rb:11

And the game should say "Enter guess:"

07/features/step_definitions/mastermind.rb:11

1 scenario

1 failed step

2 skipped steps

1 passed step

We’re getting an ArgumentError instead of a NameError.

This tells us two things: first, the feature is hooked up to the correct

code; second, the Game needs to handle the messenger argument to the

initialize method.

The process we’re about to go through is the Red-Green-Refactor cycle

straight out of Test-Driven Development. The idea is that you write a

failing example (red), write only enough code to make the example pass

(green), and then remove any unwanted duplication (refactor).

This is a process not unlike music or dancing. You get into a groove

and it moves very, very quickly. To strive for that feeling, we’re going to

go through these steps in rapid succession with very little discussion

between each step.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=37

RED: START WITH A FAILING CODE EXAMPLE 38

3.1 Red: Start With a Failing Code Example

In game_spec.rb, we want to do what we’ve done in the feature: spec-

ify that when we start the game, it sends the right messages to the

messenger. Start by modifying game_spec.rb as follows:

Download mm/08/spec/mastermind/game_spec.rb

require File.join(File.dirname(__FILE__), "/../spec_helper")

module Mastermind

describe Game do

context "starting up" do

it "should send a welcome message" do

messenger.should_receive(:puts).with("Welcome to Mastermind!")

game.start

end

end

end

end

We describe the behaviour of a game object in a specific context: the

game is just starting up. We start with the smallest amount of code we

can write to express the intent of the example. The example expresses

an expectation that a game, when starting up, should send a welcome

message.

The expectation is expressed using RSpec’s built-in mock framework,

which is designed to speak like English: the messenger object should

receive the puts() message with the string literal “Welcome to Master-

mind!” We’ll cover the mock framework in detail later on in Chapter 12,

Mocking in RSpec, on page 151, but for now we just need to recognize

that we have this expectation, and that we want some feedback if it is

not met.

The example needs a few more things to be complete, but by starting

with an expression of intent, we spend more time describing exactly

what we want and less time thinking about how to set things up for an

imaginary example. At this point, we’re going to run the file and let the

feedback we get push us in the right direction. If you run the file with

the spec command you’ll see output like this:

F

1)

NameError in 'Mastermind::Game starting up should send a welcome message'

undefined local variable or method `messenger' for \

#<Spec::Example::ExampleGroup::Subclass_1::Subclass_2:0x112fc18>

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/08/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=38

GREEN: GET THE EXAMPLE TO PASS 39

01/08/spec/mastermind/game_spec.rb:7:

01/08/spec/mastermind/game_spec.rb:4:

Finished in 0.00866 seconds

1 example, 1 failure

And voila! We have red, a failing example. Sometimes failures are logical

failures, sometimes errors. In this case, we have an error. Regardless,

once we have red, we want to get to green.

3.2 Green: Get the Example To Pass

The error we got is a NameError on messenger. Observing this feedback,

we want to add a messenger object. Since we’re using the should_receive()

method from the mock framework, we can just create a stock mock

object using the mock() method.

Download mm/09/spec/mastermind/game_spec.rb

require File.join(File.dirname(__FILE__), "/../spec_helper")

module Mastermind

describe Game do

context "starting up" do

it "should send a welcome message" do

messenger = mock("messenger")

messenger.should_receive(:puts).with("Welcome to Mastermind!")

game.start

end

end

end

end

The mock() method creates an instance of Spec::Mocks::Mock, which will

behave however we program it to. As you’ll see a bit later this chapter,

the string passed to the mock() method is used for messages when an

expectation fails.

Run game_spec.rb again and you should see similar output, but this

time with a NameError on game. Following the feedback from RSpec,

add the game object:

Download mm/10/spec/mastermind/game_spec.rb

require File.join(File.dirname(__FILE__), "/../spec_helper")

module Mastermind

describe Game do

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/09/spec/mastermind/game_spec.rb
http://media.pragprog.com/titles/achbd/code/mm/10/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=39

GREEN: GET THE EXAMPLE TO PASS 40

context "starting up" do

it "should send a welcome message" do

messenger = mock("messenger")

game = Game.new(messenger)

messenger.should_receive(:puts).with("Welcome to Mastermind!")

game.start

end

end

end

end

Now run the spec again and you should see this:

F

1)

ArgumentError in 'Mastermind::Game starting up should send a welcome message'

wrong number of arguments (1 for 0)

01/10/spec/mastermind/game_spec.rb:8:in `initialize'

01/10/spec/mastermind/game_spec.rb:8:in `new'

01/10/spec/mastermind/game_spec.rb:8:

01/10/spec/mastermind/game_spec.rb:4:

Finished in 0.008357 seconds

1 example, 1 failure

This time we get an argument error indicating that Game#initialize()

needs to accept the messenger object. Go ahead and skip on over to

lib/mastermind/game.rb and add an initialize() method as follows:

Download mm/11/lib/mastermind/game.rb

module Mastermind

class Game

def initialize(messenger)

end

end

end

Run game_spec.rb and you should see this error:

F

1)

NoMethodError in 'Mastermind::Game starting up should send a welcome message'

undefined method `start' for #<Mastermind::Game:0x5d8540>

01/11/spec/mastermind/game_spec.rb:10:

01/11/spec/mastermind/game_spec.rb:4:

Finished in 0.008641 seconds

1 example, 1 failure

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/11/lib/mastermind/game.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=40

GREEN: GET THE EXAMPLE TO PASS 41

Time to add a start() method:

Download mm/12/lib/mastermind/game.rb

module Mastermind

class Game

def initialize(messenger)

end

def start

end

end

end

Now run game_spec.rb again and instead of an error, we get our first

logical failure.

F

1)

Spec::Mocks::MockExpectationError in \

'Mastermind::Game starting up should send a welcome message'

Mock 'messenger' expected :puts with \

("Welcome to Mastermind!") once, but received it 0 times

01/12/spec/mastermind/game_spec.rb:9:

01/12/spec/mastermind/game_spec.rb:4:

Finished in 0.009561 seconds

1 example, 1 failure

The expectation that the welcome message is received by the messenger

is not being met. To resolve this, we just need to store the messenger

in an instance variable and send it the puts() message from the start()

method in the game object:

Download mm/13/lib/mastermind/game.rb

module Mastermind

class Game

def initialize(messenger)

@messenger = messenger

end

def start

@messenger.puts "Welcome to Mastermind!"

end

end

end

Now run the file and you should see this glorious output:

.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/12/lib/mastermind/game.rb
http://media.pragprog.com/titles/achbd/code/mm/13/lib/mastermind/game.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=41

GREEN: GET THE EXAMPLE TO PASS 42

Finished in 0.008373 seconds

1 example, 0 failures

Try running it with the format option:

spec spec/mastermind/game_spec.rb --format specdoc

Mastermind::Game starting up

- should send a welcome message

Finished in 0.008202 seconds

1 example, 0 failures

The specdoc format lists all of the examples with all of the text descrip-

tions you include. Assuming that your monitor has more colors than

this book, you can also add the --color option to see passing examples

in green and failing examples in red.

At this point we move to the third part of the cycle, refactoring to remove

duplication. Sometimes, however, there is really not any duplication to

remove. This seems one of those cases, so we’re done with this cycle.

But before we start another cycle, let’s see what impact we’ve had on

the feature thus far.

Go ahead and run the feature file with the cucumber command. The

output should look like this now:

Feature: code-breaker starts game

As a code-breaker

I want to start a game

So that I can break the code

Scenario: start game

13/features/codebreaker_starts_game.feature:8

Given I am not yet playing

13/features/step_definitions/mastermind.rb:1

When I start a new game

13/features/step_definitions/mastermind.rb:5

Then the game should say "Welcome to Mastermind!"

13/features/step_definitions/mastermind.rb:11

undefined method `include' for #<Object:0x19a3778>

(NoMethodError)

./13/features/step_definitions/mastermind.rb:12:in

`/^the game should say "(.*)"$/'

13/features/codebreaker_starts_game.feature:11:in

`Then the game should say "Welcome to Mastermind!"'

And the game should say "Enter guess:"

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=42

GREEN: GET THE EXAMPLE TO PASS 43

13/features/step_definitions/mastermind.rb:11

1 scenario

1 failed step

1 skipped step

2 passed steps

The missing include() method is an RSpec expectation matcher method,

so we need to require the RSpec expectations library:

Download mm/14/features/support/env.rb

$: << File.join(File.dirname(__FILE__), "/../../lib")

require 'spec/expectations'

require 'mastermind'

Run the feature again, and:

Feature: code-breaker starts game

As a code-breaker

I want to start a game

So that I can break the code

Scenario: start game

14/features/codebreaker_starts_game.feature:8

Given I am not yet playing

14/features/step_definitions/mastermind.rb:1

When I start a new game

14/features/step_definitions/mastermind.rb:5

Then the game should say "Welcome to Mastermind!"

14/features/step_definitions/mastermind.rb:11

And the game should say "Enter guess:"

14/features/step_definitions/mastermind.rb:11

expected ["Welcome to Mastermind!"] to include "Enter guess:"

(Spec::Expectations::ExpectationNotMetError)

./14/features/step_definitions/mastermind.rb:12:in

`/^the game should say "(.*)"$/'

14/features/codebreaker_starts_game.feature:12:in

`And the game should say "Enter guess:"'

1 scenario

1 failed step

3 passed steps

Progress! Now one of the two Thens is passing, so it looks like we’re

about halfway done with this feature. Actually we’re quite a bit more

than halfway done, because, as you’ll soon see, all of the pieces are

already in place for the rest.

The next failing step is the next thing to work on: “And the game should

say: Enter guess:” Go ahead and add an example for this behaviour to

game_spec.rb. Start with the last two lines, like this:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/14/features/support/env.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=43

GREEN: GET THE EXAMPLE TO PASS 44

Download mm/14/spec/mastermind/game_spec.rb

it "should prompt for the first guess" do

messenger.should_receive(:puts).with("Enter guess:")

game.start

end

Then run the examples and let the feedback guide you through each

step like we did in the first example. The example should end up looking

like this:

Download mm/16/spec/mastermind/game_spec.rb

it "should prompt for the first guess" do

messenger = mock("messenger")

game = Game.new(messenger)

messenger.should_receive(:puts).with("Enter guess:")

game.start

end

And the feedback should end up looking like this:

.F

1)

Spec::Mocks::MockExpectationError in \

'Mastermind::Game starting up should prompt for the first guess'

Mock 'messenger' expected :puts with ("Enter guess:") \

but received it with ("Welcome to Mastermind!")

./01/16/spec/mastermind/../../lib/mastermind/game.rb:8:in `start'

01/16/spec/mastermind/game_spec.rb:17:

01/16/spec/mastermind/game_spec.rb:4:

Finished in 0.008954 seconds

2 examples, 1 failure

It looks like we need to send the messenger puts() with “Enter guess:”

So head back to game.rb and modify it as follows:

Download mm/17/lib/mastermind/game.rb

def start

@messenger.puts "Welcome to Mastermind!"

@messenger.puts "Enter guess:"

end

Now run game_spec.rb:

FF

1)

Spec::Mocks::MockExpectationError in \

'Mastermind::Game starting up should send a welcome message'

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/14/spec/mastermind/game_spec.rb
http://media.pragprog.com/titles/achbd/code/mm/16/spec/mastermind/game_spec.rb
http://media.pragprog.com/titles/achbd/code/mm/17/lib/mastermind/game.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=44

GREEN: GET THE EXAMPLE TO PASS 45

Mock 'messenger' expected :puts with \

("Welcome to Mastermind!") but received it with ("Enter guess:")

./01/17/spec/mastermind/../../lib/mastermind/game.rb:10:in `start'

01/17/spec/mastermind/game_spec.rb:10:

01/17/spec/mastermind/game_spec.rb:4:

2)

Spec::Mocks::MockExpectationError in \

'Mastermind::Game starting up should prompt for the first guess'

Mock 'messenger' expected :puts with ("Enter guess:") \

but received it with ("Welcome to Mastermind!")

./01/17/spec/mastermind/../../lib/mastermind/game.rb:9:in `start'

01/17/spec/mastermind/game_spec.rb:17:

01/17/spec/mastermind/game_spec.rb:4:

Finished in 0.009537 seconds

2 examples, 2 failures

And ta da! Now not only is the second example still failing, but the

first example is failing now as well! Who’da thunk? This may seem a

bit confusing if you’ve never worked with mock objects and message

expectations before, but mock objects are like computers. They are

extraordinarily obedient, but they are not all that clever. By default,

mocks will expect exactly what you tell them to expect, nothing more

and nothing less.

We’ve told the mock in the first example to expect puts() with “Welcome

to Mastermind!” and we’ve satisfied that requirement, but we’ve only

told it to expect “Welcome to Mastermind!” It doesn’t know anything

about “Enter guess:”

Similarly, the mock in the second example expects “Enter guess:” but

the first message it gets is “Welcome to Mastermind!”

We could combine these two into a single example, but we like to fol-

low the guideline of “one expectation per example.” The rationale here

is that if there are two expectations in an example that should both

fail given the implementation at that moment, we’ll only see the first

failure. No sooner do we meet that expectation than we discover that

we haven’t met the second expectation. If they live in separate exam-

ples, then they’ll both fail, and that will provide us with more accurate

information than if only one of them is failing.

We could also try to break the messages up into different steps, but

we’ve already defined how we want to talk to the game object. So how

can we resolve this?

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=45

GREEN: GET THE EXAMPLE TO PASS 46

There are a couple of ways we can go about it, but the simplest way is

to tell the mock messenger to only listen for the messages we tell it to

expect, and ignore any other messages. This is based on the Null Object

design pattern [MRB97], and is supported by RSpec’s mock framework

with the as_null_object() method:

Download mm/18/spec/mastermind/game_spec.rb

require File.join(File.dirname(__FILE__), "/../spec_helper")

module Mastermind

describe Game do

context "starting up" do

it "should send a welcome message" do

messenger = mock("messenger").as_null_object

game = Game.new(messenger)

messenger.should_receive(:puts).with("Welcome to Mastermind!")

game.start

end

it "should prompt for the first guess" do

messenger = mock("messenger").as_null_object

game = Game.new(messenger)

messenger.should_receive(:puts).with("Enter guess:")

game.start

end

end

end

end

Hey, there’s a fair amount of duplication here. When you observe dupli-

cation while you’re in the middle of the red part of Red-Green-Refactor,

it’s best to just take note of it and plan to address it once you get to

green.

Now go ahead and run game_spec.rb with --format specdoc:

Mastermind::Game starting up

- should send a welcome message

- should prompt for the first guess

Finished in 0.008966 seconds

2 examples, 0 failures

Good news. Both examples are now passing. Now that we have green,

it’s time to refactor!

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/18/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=46

REFACTOR TO REMOVE DUPLICATION 47

3.3 Refactor to Remove Duplication

In the preface to his seminal book on Refactoring [FBB+99], Martin

Fowler writes: “Refactoring is the process of changing a software system

in such a way that it does not alter the external behaviour of the code

yet improves its internal structure.”

How do we know that we’re not changing behaviour? We run the exam-

ples between every change. If they pass, we’ve refactored successfully. If

any fail, we know that the very last change we made caused a problem

and we either quickly recognize and address the problem, or rollback

that step to get back to green and try again.

Fowler talks about changing the designs of systems, but on a more

granular scale, we want to refactor to eliminate duplication in the imple-

mentation and examples. Looking back at game_spec.rb, we can see

that the first two lines of each example are identical. Perhaps you

noticed this earlier, but we prefer to refactor in the green rather than

in the red. Also, you may recall that we wrote the last two lines of each

example first because they expressed intent.

In this case we have a very clear break between what is context and

what is behaviour, so let’s take advantage of that and move the context

to a block that is executed before each of the examples. Not in the least

coincidentally, RSpec calls the method before() and it takes a symbol to

indicate before what.

As with moving from red to green, we’re going to go through this one

step at a time. The steps are very small, but they happen in rapid suc-

cession, running the examples between each step. I’m not going to show

you the output after each step, but you should be running the exam-

ples between each step to make sure that each change is not affecting

the behaviour.

First, change messenger, in the first example only, to an instance vari-

able and move it to a before() method.

Download mm/19/spec/mastermind/game_spec.rb

require File.join(File.dirname(__FILE__), "/../spec_helper")

module Mastermind

describe Game do

context "starting up" do

before(:each) do

@messenger = mock("messenger").as_null_object

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/19/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=47

REFACTOR TO REMOVE DUPLICATION 48

it "should send a welcome message" do

game = Game.new(@messenger)

@messenger.should_receive(:puts).with("Welcome to Mastermind!")

game.start

end

it "should prompt for the first guess" do

messenger = mock("messenger").as_null_object

game = Game.new(messenger)

messenger.should_receive(:puts).with("Enter guess:")

game.start

end

end

end

end

Run the examples to make sure they pass. If they don’t, make sure that

you’ve changed all the references to messenger in before(:each) and the

first example from local variables to instance variables.

Now do the same thing with the game object.

Download mm/20/spec/mastermind/game_spec.rb

require File.join(File.dirname(__FILE__), "/../spec_helper")

module Mastermind

describe Game do

context "starting up" do

before(:each) do

@messenger = mock("messenger").as_null_object

@game = Game.new(@messenger)

end

it "should send a welcome message" do

@messenger.should_receive(:puts).with("Welcome to Mastermind!")

@game.start

end

it "should prompt for the first guess" do

messenger = mock("messenger").as_null_object

game = Game.new(messenger)

messenger.should_receive(:puts).with("Enter guess:")

game.start

end

end

end

end

Again, run the examples and make sure they pass. The last step is

to remove the first two lines of the second example and reference the

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/20/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=48

REFACTOR TO REMOVE DUPLICATION 49

instance variables.

Download mm/21/spec/mastermind/game_spec.rb

require File.join(File.dirname(__FILE__), "/../spec_helper")

module Mastermind

describe Game do

context "starting up" do

before(:each) do

@messenger = mock("messenger").as_null_object

@game = Game.new(@messenger)

end

it "should send a welcome message" do

@messenger.should_receive(:puts).with("Welcome to Mastermind!")

@game.start

end

it "should prompt for the first guess" do

@messenger.should_receive(:puts).with("Enter guess:")

@game.start

end

end

end

end

Now that’s a bit cleaner, don’t you think? As noted earlier, the code

before(:each) example sets up the context and the code in each example

is restricted to that which expresses intent.

Now run the feature again:

Feature: code-breaker starts game

As a code-breaker

I want to start a game

So that I can break the code

Scenario: start game

21/features/codebreaker_starts_game.feature:8

Given I am not yet playing

21/features/step_definitions/mastermind.rb:1

When I start a new game

21/features/step_definitions/mastermind.rb:5

Then the game should say "Welcome to Mastermind!"

21/features/step_definitions/mastermind.rb:11

And the game should say "Enter guess:"

21/features/step_definitions/mastermind.rb:11

1 scenario

4 passed steps

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/21/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=49

WHAT WE JUST DID 50

And voila! We now have our first passing code examples and our first

passing feature. There were a lot of steps to get there, but in practice

this all really takes just a few minutes, even with all the wiring and

require statements.

We’ve also set up quite a bit of infrastructure. You’ll see, as we move

along, that there is less and less new material needed to add more

features, code examples and application code. It just builds gradually

on what we’ve already developed.

In the last chapter, we created the bin/mastermind script (bin/mastermind.bat

if you’re on Windows) that we use to run the mastermind game. Go

ahead and fire up a shell and run the script and you’ll see the following

output:

Welcome to Mastermind!

Enter guess:

Now look at that! Who knew that all this code was actually going to

start to make something work? Of course, our Mastermind game just

says hello and then climbs back in its cave, so we’ve got a way to go

before you’ll want to show this off to all your friends.

In the next chapter, we’ll start to get down to the real fun, submitting

guesses and having the game score them. By the end of the next chap-

ter, you’ll actually be able to play the game! But before we move on, let’s

review what we’ve done thus far.

3.4 What We Just Did

We started this chapter with a failing step in a Cucumber scenario. This

was our cue to jump from the outer circle (Cucumber) to the inner circle

(RSpec) of the BDD cycle.

We then followed the familiar TDD Red/Green/Refactor cycle using

RSpec. Once we had a passing code example we re-ran the Cucum-

ber scenario. We saw that we had gotten our first Then step to pass,

but there was one more that was failing, so we jumped back down to

RSpec, went through another Red/Green/Refactor cycle, and now the

whole scenario was passing.

This is the BDD cycle. Driving development from the Outside-In, start-

ing with business facing scenarios in Cucumber and working our way

inward to the underlying objects with RSpec.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=50

WHAT WE JUST DID 51

The material in the next chapter, submitting guesses, is going to present

some interesting challenges. It will expose you to some really cool fea-

tures in Cucumber, as well as some thought provoking discussion about

the relationship between Cucumber scenarios and RSpec code exam-

ples. So take a few minutes break, drink up that brain juice, and meet

me at the top of the next chapter.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=51

Chapter 4

Adding New Features
Welcome back! We left off with the Mastermind game inviting us to

guess the secret code, but then leaving us hanging at the command

line. The next feature we’re going to tackle is submitting a guess, and

getting feedback from the Mastermind game as to how close the guess

is to breaking the secret code. Here’s how it should work, expressed as

a Cucumber feature and narrative:

Feature: code-breaker submits guess

The code-breaker submits a guess of four colored

pegs. The mastermind game marks the guess with black

and white "marker" pegs.

For each peg in the guess that matches color

and position of a peg in the secret code, the

mark includes one black peg. For each additional

peg in the guess that matches the color but not

the position of a color in the secret code, a

white peg is added to the mark.

For acceptance criteria, we’ll need a scenario with all four colors correct

and in the correct positions, like this.

Scenario: all correct colors in the correct positions

Given the secret code is r g c y

When I guess r g c y

Then the mark should be bbbb

Then we’ll need another with all four colors correct, but only two in the

correct postions.

Scenario: all correct colors with two in the correct position

Given the secret code is r g c y

When I guess r g y c

Prepared exclusively for Simone Joswig

SCENARIO OUTLINES 53

Then the mark should be bbww

Then we’ll need one with only one in the correct position, then none.

Then we’ll need more scenarios for three correct colors with three in the

correct position, two in the correct position, one, and then none. Then

the same for two correct colors, one correct color and no correct colors

at all. That’s a lot of scenarios, all with the same format.

We’re not going to want to write that over and over again because it will

be hard to read. We need a strategy to DRY1 things up here, without

the sort of indirection that would be typical in code but would make the

scenarios difficult to read.

4.1 Scenario Outlines

As you’ll read in the (as yet) unwritten chp.cucumber, Cucumber offers a

number of different strategies for keeping scenarios DRY, each targeted

at reducing different sorts of duplication that crop up when writing

suites of features and scenarios. In this case, we have a number of sce-

narios that will have a common format with different input and output

data.

To solve this problem, Cucumber lets us define a single Scenario Outline

and then provide tables of input data and expected output. Here’s how

you define a Scenario Outline:

Scenario Outline: submit guess

Given the secret code is <code>

When I guess <guess>

Then the mark should be <mark>

This looks a lot like the scenario declarations we wrote for the code-

breaker starts game feature, with two subtle differences:

• Scenario Outline instead of Scenario

• Variable data placeholders in <angle brackets>

The words in angle brackets are placeholders for variable data that

we’ll provide in a tabular format, inspired by FIT (see the sidebar on

the following page).

1. The Don’t Repeat Yourself principle (DRY) from The Pragmatic Programmer [HT00]

says that every piece of knowledge must have a single, unambiguous, authoritative rep-

resentation within a system.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=53

SCENARIO OUTLINES 54

FIT

Ward Cunningham’s Framework for Integration Test, or FIT,
parses display tables in rich documents written with Microsoft
Word or HTML, sends the contents of table cells to the system
in development, and compares the results from the system to
expected values in the table.∗

This allows teams who were already using tools like Word for
requirements documentation to turn those documents into
executable acceptance tests by specifying expected outputs
resulting from prescribed inputs. This works especially well when
the acceptance criteria are naturally expressed in a table.

Cucumber’s Scenario Outlines and Scenario Tables provide a
FIT-inspired tabular format for expressing repetitive scenarios
like those in our “submit guess” feature, while maintaining the
Given, When, and Then language of BDD.

∗. See http://fit.c2.com/ for more information about FIT.

Tabular Data

Here is the first of several tables we’ll add, supplying data for scenarios

in which all four colors are correct:

Scenarios: all colors correct

| code | guess | mark |

| r g y c | r g y c | bbbb |

| r g y c | r g c y | bbww |

| r g y c | y r g c | bwww |

| r g y c | c r g y | wwww |

The Scenarios keyword indicates that what follows are rows of exam-

ple data. The first row contains column headers that align with the

placeholders in the scenario outline. Each subsequent row represents

a single scenario.

Following convention, we’ve named the columns using the same names

that are in angle brackets in the scenario outline, but the placeholders

and columns are bound by position, not name.

The <code> variable in the Given step is assigned the value r g y c, from

the first column in the first data row (after the headers). It’s just as

though we wrote Given the secret code is r g y c.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://fit.c2.com/
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=54

SCENARIO OUTLINES 55

The <guess> in the When step gets r g y c from the second column, and

the <mark> in the Then step gets bbbb.

With the Scenario Outline and this first table, we’ve expressed four

scenarios that would have taken sixteen lines in only ten. We’ve also

reduced duplication and created very readable executable documenta-

tion in the process. Cucumber lets us supply as many groups of Sce-

narios as we want, supporting a very natural way to group like scenar-

ios. Here’s the resulting feature with thirteen scenarios expressed in a

mere twenty five lines (beginning with the Scenario Outline):

Download mm/23/features/codebreaker_submits_guess.feature

Feature: code-breaker submits guess

The code-breaker submits a guess of four colored

pegs. The mastermind game marks the guess with black

and white "marker" pegs.

For each peg in the guess that matches color

and position of a peg in the secret code, the

mark includes one black peg. For each additional

peg in the guess that matches the color but not

the position of a color in the secret code, a

white peg is added to the mark.

Scenario Outline: submit guess

Given the secret code is <code>

When I guess <guess>

Then the mark should be <mark>

Scenarios: all colors correct

| code | guess | mark |

| r g y c | r g y c | bbbb |

| r g y c | r g c y | bbww |

| r g y c | y r g c | bwww |

| r g y c | c r g y | wwww |

Scenarios: 3 colors correct

| code | guess | mark |

| r g y c | w g y c | bbb |

| r g y c | w r y c | bbw |

| r g y c | w r g c | bww |

| r g y c | w r g y | www |

Scenarios: 2 colors correct

| code | guess | mark |

| r g y c | w g w c | bb |

| r g y c | w r w c | bw |

| r g y c | g w c w | ww |

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/23/features/codebreaker_submits_guess.feature
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=55

SCENARIO OUTLINES 56

Scenarios: 1 color correct

| code | guess | mark |

| r g y c | r w w w | b |

| r g y c | w w r w | w |

Now that is clean and clear! It provides a wealth of information in a very

concise format. Copy that text into features/codebreaker_submits_guess.feature

and run it with this command:

cucumber --require features features/codebreaker_submits_guess.feature

You should get output that looks exactly like the text in the file, plus

the source locations for each step and code snippets for each undefined

step.

Step Definitions

Step definitions for Scenario Outlines and Tables are just like the step

definitions we learned about in Chapter 2, Describing Features with

Cucumber, on page 20. We’ll still provide regular expressions that cap-

ture input data, and a block of code that interacts with the subject

code.

Copy the first snippet into features/step_definitions/mastermind.rb and mod-

ify it as follows:

Download mm/27/features/step_definitions/mastermind.rb

Given /^the secret code is (. . . .)$/ do |code|

@messenger = StringIO.new

game = Mastermind::Game.new(@messenger)

game.start(code.split)

end

The Regexp captures a group of four characters separated by spaces at

the end of the line. This will capture the code (r c g y, for example), and

pass it to the body of the step definition. The first two lines of the body

should look familiar, as they are just like the I start a new game step.

Then the last line passes the code from the match group as an array.

Now run cucumber -r features features/codebreaker_submits_guess.feature again

and you’ll see output including this:

Scenarios: all colors correct

| code | guess | mark |

| r g y c | r g y c | bbbb |

wrong number of arguments (1 for 0) (ArgumentError)

./27/features/step_definitions/mastermind.rb:8:in

`start'

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/27/features/step_definitions/mastermind.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=56

RESPONDING TO CHANGE 57

./27/features/step_definitions/mastermind.rb:8:in

`/^the secret code is (. . . .)$/'

27/features/codebreaker_submits_guess.feature:21:in

`Given the secret code is r g y c'

You should see the ArgumentError for every scenario. This is actually good

news, because the error tells us that everything is wired up correctly,

and we now know what we have to do next: get the start() method on

Game to accept the code as an argument.

4.2 Responding to Change

At this point, all of the RSpec code examples are passing, but we’ve got

failing Cucumber scenarios. We’re in the meantime, so to speak, where

changing requirements from the outside are rendering our require-

ments on the inside incorrect.

To resolve this situation, we could use brute force and simply add a

secret code to the calls to the start() method in Mastermind::Game, and

then modify the method to accept an argument, and then run the exam-

ples. That might actually work out OK in this case because there is so

little going on in our system. It doesn’t take long, however, for a system

to grow complex enough that this brute force approach results in long

periods of time without all of the examples passing.

The Disciplined Approach

The disciplined approach to this situation is to incrementally add exam-

ples that specify the new behaviour, and follow the red/green/refactor

cycle to evolve the code to support the new and the old behaviour at

the same time. Once the new requirements are satisfied, we’ll remove

support for the old behaviour.

Take a look at the first example that calls the start() method:

Download mm/23/spec/mastermind/game_spec.rb

it "should send a welcome message" do

@messenger.should_receive(:puts).with("Welcome to Mastermind!")

@game.start

end

Leaving that in place, add a copy of it in which the only difference is

that we’re passing the code to the start() method. And let’s identify the

difference in the docstring passed to it(), so if we get disrupted, we’ll be

able to look back at this and see what’s going on.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/23/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=57

RESPONDING TO CHANGE 58

Download mm/24/spec/mastermind/game_spec.rb

it "should send a welcome message (passing the code to start)" do

@messenger.should_receive(:puts).with("Welcome to Mastermind!")

@game.start(%w[r g y c])

end

Run game_spec.rb and you should see one failure:

Mastermind::Game

starting up

should send a welcome message

should send a welcome message (passing the code to start) (FAILED - 1)

should prompt for the first guess

1)

ArgumentError in 'Mastermind::Game starting up should send a welcome message (passin...*TRUNC*
wrong number of arguments (1 for 0)

./011/spec/mastermind/game_spec.rb:18:in `start'

./011/spec/mastermind/game_spec.rb:18:

The additional context information we added to the docstring helps us

to see that the failing example is the new one we just added. To get that

to pass without failing the others, we’ll add an optional argument to the

start() method:

Download mm/25/lib/mastermind/game.rb

def start(code=nil)

@messenger.puts "Welcome to Mastermind!"

@messenger.puts "Enter guess:"

end

If you run game_spec.rb again, you should see that all three examples

are passing. With that simple change, the start() method is supporting

both the old and the new requirements.

Finding the Way Home

At this point there are a couple of different paths to our destination.

Because the code supports 0 or 1 argument, we don’t need to copy the

other example that was there before this refactoring. We can just modify

the example to pass the code to the start() method, run the examples,

and watch them pass. Go ahead and do that yourself.

So now we’re left with two versions of the first example. We’d like to

remove the old version, but before we do, we can do a sort of reverse-

sanity-check-refactoring. Modify the start method such that the code

argument is no longer optional:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/24/spec/mastermind/game_spec.rb
http://media.pragprog.com/titles/achbd/code/mm/25/lib/mastermind/game.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=58

RESPONDING TO CHANGE 59

Download mm/26/lib/mastermind/game.rb

def start(code)

@messenger.puts "Welcome to Mastermind!"

@messenger.puts "Enter guess:"

end

Now run the examples and you should see one failure:

Mastermind::Game

starting up

should send a welcome message (FAILED - 1)

should send a welcome message (passing the code to start)

should prompt for the first guess

1)

ArgumentError in 'Mastermind::Game starting up should send a welcome message'

wrong number of arguments (0 for 1)

./013/spec/mastermind/game_spec.rb:13:in `start'

./013/spec/mastermind/game_spec.rb:13:

The one that is failing is the only example left that is still calling start()

with no code, and it’s a near duplicate of the passing example that says

(passing the code to start). We can now safely remove the failing example,

and remove the parenthetical context from the passing example, leaving

us with this:

Download mm/27/spec/mastermind/game_spec.rb

it "should send a welcome message" do

@messenger.should_receive(:puts).with("Welcome to Mastermind!")

@game.start(%w[r c g y])

end

it "should prompt for the first guess" do

@messenger.should_receive(:puts).with("Enter guess:")

@game.start(%w[r c g y])

end

Download mm/27/lib/mastermind/game.rb

def start(code)

@messenger.puts "Welcome to Mastermind!"

@messenger.puts "Enter guess:"

end

We’ve reached our short term destination. The route here was cir-

cuitous, but we did things with discipline, taking small steps, with a

green bar only moments away at every step. Again, in this particular

case, brute force may be OK, but it’s very useful to have the skill to

approach this in a disciplined way on the occasions in which brute

force leads you astray.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/26/lib/mastermind/game.rb
http://media.pragprog.com/titles/achbd/code/mm/27/spec/mastermind/game_spec.rb
http://media.pragprog.com/titles/achbd/code/mm/27/lib/mastermind/game.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=59

RESPONDING TO CHANGE 60

A Small Change Goes a Long Way

Now let’s see what impact that had on the scenarios. Run the feature

again with cucumber -r features features/codebreaker_submits_guess.feature,

and you should see output including:

13 scenarios

26 undefined steps

13 passed steps

There are no failures now, and we still have 26 steps undefined, but we

now have 13 passing steps: the Given steps in each scenario. Remem-

ber, each row in the tables represents a separate scenario. Until we get

to the point where the failures are logical failures, as opposed to run-

time errors due to structural discrepancies, a small change is likely to

impact all of the scenarios at once.

The remaining undefined steps are the When steps that actually sub-

mit the guess, and the Then steps that set the expectation that the

game should mark the guess. The details of these steps vary across all

the different scenarios depending on the content of the guess and the

expected mark, but they all have the same structure. So even though

you see many code snippets for the undefined steps, we’ll really only

need two.

The first one is the When step: the action step. Using the snippet pro-

vided by Cucumber, and filling in the code block, here is the implemen-

tation of this When step, along with some necessary modifications to

the Given step.

Download mm/29/features/step_definitions/mastermind.rb

Given /^the secret code is (. . . .)$/ do |code|

@messenger = StringIO.new

@game = Mastermind::Game.new(@messenger)

@game.start(code.split)

end

When /^I guess (. . . .)$/ do |code|

@game.guess(code.split)

end

We need to make @game an instance variable so it can be shared across

the two steps. Now run this feature with the cucumber command and

you should see output like this:

Scenarios: all colors correct

| code | guess | mark |

| r g y c | r g y c | bbbb |

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/29/features/step_definitions/mastermind.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=60

RESPONDING TO CHANGE 61

undefined method `guess' for #<Mastermind::Game:0x1805f38

@messenger=#<StringIO:0x1805f60>> (NoMethodError)

./29/features/step_definitions/mastermind.rb:12:in

`/^I guess (. . . .)$/'

29/features/codebreaker_submits_guess.feature:21:in

`When I guess r g y c'

You should actually see many similar messages. They all tell us that we

need to implement a guess() method on Mastermind::Game.

Loosening the Leash

Earlier, when the Given step told us we needed to add an argument to

start(), we already had examples in place that used that method, so we

refactored the method definition in the examples in order to drive that

change from the code examples.

This situation is a bit different. We’d like to create examples in RSpec

before writing any code in the Game class, but we haven’t implemented

any steps in Cucumber that tell us how that method should behave.

Right now, we only need it to exist. We could, in theory, write an exam-

ple like this:

it "should have a guess method" do

game = Game.new

game.guess(%w[r y c g])

end

Absent the existence of the guess() method, this example would fail,

and we’d be able to happily move on knowing that an example drove

the method into existence. But BDD is about behaviour, not structure.

We want to use methods in code examples, not specify that they exist.

So how can we proceed and stay true to the cycle without adding a silly

example like the one above?

The answer is that we can’t. And, furthermore, it’s OK! We’re going to

sin a little bit here and just add the method to Game without a spec.

Download mm/30/lib/mastermind/game.rb

def guess(guess)

end

Scary, huh? Well, relax. We’re only moments away from validating the

existence of this method, and it is, after all, being driven into existence

by a failing example. It’s just an example that lives up at a higher level.

Now go ahead and run the feature, and you should see some different

feedback:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/30/lib/mastermind/game.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=61

THE SIMPLEST THING 62

13 scenarios

13 undefined steps

26 passed steps

Again there are no failures, but now there are only 13 steps undefined.

These are the Then steps. Go ahead and implement the step definition

in features/step_definitions/mastermind.rb like this:

Download mm/31/features/step_definitions/mastermind.rb

Then /^the mark should be (.*)$/ do |mark|

@messenger.string.split("\n").should include(mark)

end

Look familiar? This is just like the Then step from earlier scenarios: the

game should say "(.*)". We’re getting the string from the messenger, splitting

it into an array, and expecting the mark to be one of the array elements.

Run the feature and you should see feedback like this:

Scenarios: all colors correct

| code | guess | mark |

| r g y c | r g y c | bbbb |

expected ["Welcome to Mastermind!", "Enter guess:"]

to include "bbbb" (Spec::Expectations::ExpectationNotMetError)

./31/features/step_definitions/mastermind.rb:28:in

`/^the mark should be (.*)$/'

31/features/codebreaker_submits_guess.feature:21:in

`Then the mark should be bbbb'

Fantastic! Now all 13 scenarios are failing on the Then step. Again, this

is good news. We know everything is wired up correctly, and we now

have all of the step definitions we need. Now it’s time to drill down to

RSpec and drive out the solution with isolated examples.

4.3 The Simplest Thing

Looking back at the scenarios, we’ll build a code example around the

first one that is failing: all four colors correct and all in the correct

positions. Open up spec/mastermind/game_spec.rb and add the following

code inside the describe Game block, after the context "starting up" block.

Download mm/32/spec/mastermind/game_spec.rb

Line 1 context "marking a guess" do

- context "with all 4 colors correct in the correct places" do

- it "should mark the guess with bbbb" do

- messenger = mock("messenger").as_null_object
5 game = Game.new(messenger)
- game.start(%w[r g y c])

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/31/features/step_definitions/mastermind.rb
http://media.pragprog.com/titles/achbd/code/mm/32/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=62

THE SIMPLEST THING 63

-

- messenger.should_receive(:puts).with("bbbb")
-

10 game.guess(%w[r g y c])
- end

- end

- end

We’re nesting the “with all 4 colors correct in the correct places” context

inside the “marking a guess” context. Then the code example “should

mark the guess with bbbb.”

The first three lines in the example provide the givens for this example.

The when is actually at the end of the example on line 10. The then is

expressed as a message expectation (mock), so it has to appear before

the action.

After starting the game, this example sets an expectation that the mes-

senger should receive the puts() message with the string “bbbb” as the

result of calling game.guess() with the same secret code passed to the

start() method.

Running this example produces the following output:

Mastermind::Game

starting up

should send a welcome message

should prompt for the first guess

marking a guess

with all 4 colors correct in the correct places

should mark the guess with bbbb (FAILED - 1)

1)

Spec::Mocks::MockExpectationError in 'Mastermind::Game marking a guess with all 4 co...*TRUNC*
Mock 'messenger' expected :puts with ("bbbb") once, but received it 0 times

./07/spec/mastermind/game_spec.rb:30:

Finished in 0.002338 seconds

3 examples, 1 failure

The example is failing, as we would expect. To get it to pass, we’ll do

the simplest thing that could possibly work.

One guideline that comes directly from Test Driven Development is to

write only enough code to pass the one failing example, and no more.

To do this, we write the simplest thing that we can to get the example

to pass. In this case, we’ll simply call puts("bbbb") on the messenger from

the guess() method.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=63

THE SIMPLEST THING 64

Download mm/33/lib/mastermind/game.rb

def guess(guess)

@messenger.puts "bbbb"

end

That’s all we need to get the example to pass:

Mastermind::Game

starting up

should send a welcome message

should prompt for the first guess

marking a guess

with all 4 colors correct in the correct places

should mark the guess with bbbb

Finished in 0.001845 seconds

3 examples, 0 failures

If this idea is new to you, and you’re experiencing that gnawing feeling

that one only gets when knowingly committing a sin, you have our full

support. Your instinct is correct. This code is naive, and will tell the

user that he’s broken the secret code every time he submits a guess.

Obviously, this does not solve the problem that we know we need to

solve. But there are two sides to every story.

Express the problem before solving it

If code is the solution to a problem, and naive code is passing all of

its examples, then the problem has not been properly expressed in the

examples. Yes, there is something missing here, but it is missing in

the examples, not just the code. We’ll be writing more examples, and

enhancing this code to get them to pass very soon. Promise.

Now run the feature again with the cucumber command, and we get

some new feedback:

Scenarios: all colors correct

| code | guess | mark |

| r g y c | r g y c | bbbb |

| r g y c | r g c y | bbww |

expected ["Welcome to Mastermind!", "Enter guess:", "bbbb"] to include "bbww" (S...*TRUNC*
./08/features/step_definitions/mastermind.rb:28:in `/^the mark should be (.*)$/'

08/features/codebreaker_submits_guess.feature:22:in `Then the mark should be bbw...*TRUNC*

The first scenario is passing now, but the second one is still failing.

Now we’ll add a new code example based on the next failing scenario.

That wasn’t too long, was it?

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/33/lib/mastermind/game.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=64

THE SIMPLEST THING 65

This time we’ll submit a guess that has all the right colors, but only two

in the correct positions.

Download mm/34/spec/mastermind/game_spec.rb

context "with all 4 colors correct and 2 in the correct places" do

it "should mark the guess with bbww" do

messenger = mock("messenger").as_null_object

game = Game.new(messenger)

game.start(%w[r g y c])

messenger.should_receive(:puts).with("bbww")

game.guess(%w[r g c y])

end

end

Run that, and watch it fail:

Mastermind::Game

starting up

should send a welcome message

should prompt for the first guess

marking a guess

with all 4 colors correct in the correct places

should mark the guess with bbbb

with all 4 colors correct and 2 in the correct places

should mark the guess with bbww (FAILED - 1)

1)

Spec::Mocks::MockExpectationError in 'Mastermind::Game marking a guess with all 4 co...*TRUNC*
Mock 'messenger' expected :puts with ("bbww") but received it with ("bbbb")

./09/spec/mastermind/game_spec.rb:41:

Finished in 0.002539 seconds

4 examples, 1 failure

The trick now is to get this example to pass without causing the previ-

ous one to fail. One solution would be to start with an empty string and

append a “b” for each peg that matches the color of the peg in the same

position in the code, and a “w” for each peg that matches the color of

a peg in a different position in the code. Once we’ve looked at all four

pegs in the guess, we’ll just puts() the string via the messenger.

To do that, we’ll need to store the code in an instance variable in the

start() method. Then we can access it in the guess() method.

Download mm/35/lib/mastermind/game.rb

def start(code)

@code = code

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/34/spec/mastermind/game_spec.rb
http://media.pragprog.com/titles/achbd/code/mm/35/lib/mastermind/game.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=65

THE SIMPLEST THING 66

@messenger.puts "Welcome to Mastermind!"

@messenger.puts "Enter guess:"

end

def guess(guess)

result = ""

guess.each_with_index do |peg, index|

if @code[index] == peg

result << "b"

elsif @code.include?(peg)

result << "w"

end

end

@messenger.puts result

end

There are many ways we could express this, and this one may or may

not be your favorite. If it’s not, go with this for the duration of the

tutorial, and then feel free to refactor later.

At this point all of the examples pass:

Mastermind::Game

starting up

should send a welcome message

should prompt for the first guess

marking a guess

with all 4 colors correct in the correct places

should mark the guess with bbbb

with all 4 colors correct and 2 in the correct places

should mark the guess with bbww

Finished in 0.002077 seconds

4 examples, 0 failures

Observe the impact on the scenario

Every time we get to a green bar in the code examples, it’s a good idea to

run the scenarios we’re working on to see what impact we’ve had. In this

case, we’ve not only gotten all of the examples to pass, but we’ve also

made some progress on the scenarios. The second scenario is passing,

but the third one is failing. Look closely at the failure message:

Scenarios: all colors correct

| code | guess | mark |

| r g y c | r g y c | bbbb |

| r g y c | r g c y | bbww |

| r g y c | y r g c | bwww |

expected ["Welcome to Mastermind!", "Enter guess:", "wwwb"]

to include "bwww" (Spec::Expectations::ExpectationNotMetError)

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=66

THE SIMPLEST THING 67

./35/features/step_definitions/mastermind.rb:28:in

`/^the mark should be (.*)$/'

35/features/codebreaker_submits_guess.feature:23:in

`Then the mark should be bwww'

We’re expecting “bwww”, but we got “wwwb” instead. The implementa-

tion is returning the correct collection of letters, but in the wrong order.

That’s because the one peg that is in the correct position is the last peg

that is evaluated. Let’s create one more example based on this scenario:

Download mm/36/spec/mastermind/game_spec.rb

context "with all 4 colors correct and 1 in the correct place" do

it "should mark the guess with bwww" do

messenger = mock("messenger").as_null_object

game = Game.new(messenger)

game.start(%w[r g y c])

messenger.should_receive(:puts).with("bwww")

game.guess(%w[y r g c])

end

end

Now run it and watch it fail:

Mastermind::Game

starting up

should send a welcome message

should prompt for the first guess

marking a guess

with all 4 colors correct in the correct places

should mark the guess with bbbb

with all 4 colors correct and 2 in the correct places

should mark the guess with bbww

with all 4 colors correct and 1 in the correct place

should mark the guess with bwww (FAILED - 1)

1)

Spec::Mocks::MockExpectationError in 'Mastermind::Game marking a guess with all 4 co...*TRUNC*
Mock 'messenger' expected :puts with ("bwww") but received it with ("wwwb")

./11/spec/mastermind/game_spec.rb:52:

Finished in 0.007508 seconds

5 examples, 1 failure

To get this example to pass, we’ll need to put all the “b”s at the begin-

ning of the mark. Since Ruby appends to Strings and to Arrays using

the << method, we can just change the string to an array, sort it and

join its elements:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/36/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=67

EXAMPLES ARE CODE TOO 68

Download mm/37/lib/mastermind/game.rb

def guess(guess)

result = []

guess.each_with_index do |peg, index|

if @code[index] == peg

result << "b"

elsif @code.include?(peg)

result << "w"

end

end

@messenger.puts result.sort.join

end

With that subtle change, all of the code examples pass:

Mastermind::Game

starting up

should send a welcome message

should prompt for the first guess

marking a guess

with all 4 colors correct in the correct places

should mark the guess with bbbb

with all 4 colors correct and 2 in the correct places

should mark the guess with bbww

with all 4 colors correct and 1 in the correct place

should mark the guess with bwww

Finished in 0.002428 seconds

5 examples, 0 failures

As it turns out, that was all we needed to get all of the scenarios to pass

as well:

13 scenarios

39 passed steps

4.4 Examples are Code Too

With all of the scenarios passing, now is a great time to review the code

and sniff out some code smell. We want to look at all the code that we’ve

written, including step definitions and code examples.

Refactoring step definitions

Here’s the full content of features/step_definitions/mastermind.rb.

Download mm/37/features/step_definitions/mastermind.rb

Given /^I am not yet playing$/ do

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/37/lib/mastermind/game.rb
http://media.pragprog.com/titles/achbd/code/mm/37/features/step_definitions/mastermind.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=68

EXAMPLES ARE CODE TOO 69

Given /^the secret code is (. . . .)$/ do |code|

@messenger = StringIO.new

@game = Mastermind::Game.new(@messenger)

@game.start(code.split)

end

When /^I guess (. . . .)$/ do |code|

@game.guess(code.split)

end

When /^I start a new game$/ do

@messenger = StringIO.new

game = Mastermind::Game.new(@messenger)

game.start(%w[r g y c])

end

Then /^the game should say "(.*)"$/ do |message|

@messenger.string.split("\n").should include(message)

end

Then /^the mark should be (.*)$/ do |mark|

@messenger.string.split("\n").should include(mark)

end

There’s not only a fair amount of duplication here, but the code in

the step definitions is not always as expressive as it could be. We can

improve this quite a bit by extracting helper methods from the step

definitions. After a few minutes refactoring, here’s where we ended up:

Download mm/38/features/step_definitions/mastermind.rb

def messenger

@messenger ||= StringIO.new

end

def game

@game ||= Mastermind::Game.new(messenger)

end

def messages_should_include(message)

messenger.string.split("\n").should include(message)

end

Given /^I am not yet playing$/ do

end

Given /^the secret code is (. . . .)$/ do |code|

game.start(code.split)

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/38/features/step_definitions/mastermind.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=69

EXAMPLES ARE CODE TOO 70

When /^I guess (. . . .)$/ do |code|

game.guess(code.split)

end

When /^I start a new game$/ do

game.start(%w[r g y c])

end

Then /^the game should say "(.*)"$/ do |message|

messages_should_include(message)

end

Then /^the mark should be (.*)$/ do |mark|

messages_should_include(mark)

end

The messenger() and game() methods use a common Ruby idiom of ini-

tializing an instance variable if it does not exist, and returning the value

of that variable like a standard accessor. The messages_should_include()

method is an expressive wrapper for the expectation that is repeated in

the Then steps.

In addition to making things more expressive, they are also more DRY.

If we decide later to introduce a Messenger type, we’ll only have to

change that in one place.

Refactoring code examples

Now let’s look at game_spec.rb:

Download mm/37/spec/mastermind/game_spec.rb

Line 1 require File.join(File.dirname(__FILE__), "/../spec_helper")
-

- module Mastermind
- describe Game do

5 context "starting up" do

- before(:each) do

- @messenger = mock("messenger").as_null_object
- @game = Game.new(@messenger)
- end

10

- it "should send a welcome message" do

- @messenger.should_receive(:puts).with("Welcome to Mastermind!")
- @game.start(%w[r g y c])
- end

15

- it "should prompt for the first guess" do

- @messenger.should_receive(:puts).with("Enter guess:")
- @game.start(%w[r g y c])
- end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/37/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=70

EXAMPLES ARE CODE TOO 71

20 end

-

- context "marking a guess" do

- context "with all 4 colors correct in the correct places" do

- it "should mark the guess with bbbb" do

25 messenger = mock("messenger").as_null_object
- game = Game.new(messenger)
- game.start(%w[r g y c])
-

- messenger.should_receive(:puts).with("bbbb")
30

- game.guess(%w[r g y c])
- end

- end

- context "with all 4 colors correct and 2 in the correct places" do

35 it "should mark the guess with bbww" do

- messenger = mock("messenger").as_null_object
- game = Game.new(messenger)
- game.start(%w[r g y c])
-

40 messenger.should_receive(:puts).with("bbww")
-

- game.guess(%w[r g c y])
- end

- end

45 context "with all 4 colors correct and 1 in the correct place" do

- it "should mark the guess with bwww" do

- messenger = mock("messenger").as_null_object
- game = Game.new(messenger)
- game.start(%w[r g y c])

50

- messenger.should_receive(:puts).with("bwww")
-

- game.guess(%w[y r g c])
- end

55 end

- end

- end

- end

The starting up context on line 5 includes a before() block that initializes

the @messenger and @game instance variables. Looking further down,

all of the examples in the marking a guess context use similar local vari-

ables.

We could have caught duplication earlier if we had stopped to look at

the full listing. You may have already noticed it. In fact you may have

already refactored it! But in case you haven’t, here’s what we did:

Download mm/38/spec/mastermind/game_spec.rb

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/38/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=71

EXAMPLES ARE CODE TOO 72

Line 1 require File.join(File.dirname(__FILE__), "/../spec_helper")
-

- module Mastermind
- describe Game do

5 before(:each) do

- @messenger = mock("messenger").as_null_object
- @game = Game.new(@messenger)
- end

-

10 context "starting up" do

- it "should send a welcome message" do

- @messenger.should_receive(:puts).with("Welcome to Mastermind!")
- @game.start(%w[r g y c])
- end

15

- it "should prompt for the first guess" do

- @messenger.should_receive(:puts).with("Enter guess:")
- @game.start(%w[r g y c])
- end

20 end

-

- context "marking a guess" do

- context "with all 4 colors correct in the correct places" do

- it "should mark the guess with bbbb" do

25 @game.start(%w[r g y c])
- @messenger.should_receive(:puts).with("bbbb")
- @game.guess(%w[r g y c])
- end

- end

30 context "with all 4 colors correct and 2 in the correct places" do

- it "should mark the guess with bbww" do

- @game.start(%w[r g y c])
- @messenger.should_receive(:puts).with("bbww")
- @game.guess(%w[r g c y])

35 end

- end

- context "with all 4 colors correct and 1 in the correct place" do

- it "should mark the guess with bwww" do

- @game.start(%w[r g y c])
40 @messenger.should_receive(:puts).with("bwww")

- @game.guess(%w[y r g c])
- end

- end

- end

45 end

- end

We moved the before(each) block to line 5, inside the outer-most describe()

block. This makes it available to all of the nested groups, and therefore

every example in this file.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=72

EXPLORATORY TESTING 73

Looking back at the three examples in the marking a guess context, they

all look pretty much the same except for the values. It is very tempting

to try to DRY this up, and there are a number of ways we could do it,

but none of the ways we tried ended up as simple, expressive, localized,

and clear as they are right now.

Remember that the code examples are, well, code examples! We want

them to communicate on a few different levels. We want the docstrings

we pass to the describe() and it() methods to tell a high level story of

what it means to be a particular object. We want the code in the exam-

ples to show us how to use that object.

Now that we have enough working code to start interacting with the

mastermind game, this would be a good time to start doing some exploratory

testing to make sure the marking algorithm is complete. Here’s a hint:

it’s not.

4.5 Exploratory Testing

Exploratory testing is exactly what it sounds like: testing through explo-

ration of the app. Don’t be fooled by the seeming haphazard nature of

this. Google “exploratory testing” and you’ll find upwards of 785,000

results. Testing is a craft of its own, rich with literature, experience,

and community. But the details of exploratory testing are outside the

scope of this book, and simply “exploring the app” will suffice for our

needs.

Now that the mastermind game can mark a guess for us, we just need

a minor adjustment to bin/mastermind and we can begin interacting with

the game. Here’s the script for *nix users:

Download mm/38/bin/mastermind

#!/usr/bin/env ruby

$LOAD_PATH.push File.join(File.dirname(__FILE__), "/../lib")

require 'mastermind'

game = Mastermind::Game.new(STDOUT)

game.start(%w[r g y c])

while guess = gets

game.guess guess.split

end

Windows users use the same script without the first line, and also add

bin/mastermind.bat with the following:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/38/bin/mastermind
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=73

WHAT WE JUST DID 74

Download mm/37/bin/mastermind.bat

@"ruby.exe" "%~dpn0" %*

Clearly the game won’t be too much fun because it’s got the same code

every time, but at least at this point you can show your friends. You

know, the ones who know about CTRL-C, but don’t know about cat.

Perhaps you’re wondering why we’d want to do exploratory testing if

we’ve already tested the app. Well, we haven’t. Remember, that BDD is a

design practice, not a testing practice. We’re using executable examples

of how we want the application to behave. But just as Big Design Up

Front fails to allow for discovery of features and designs that naturally

emerge through iterative development, so does driving out behaviour

with examples fail to unearth all of the corner cases that we’ll naturally

discover by simply using the software.

As you explore the Mastermind game, try to find the flaws in the mark-

ing algorithm. You’ll know what the not-so-secret code is, so try differ-

ent inputs and see what happens. What happens when you guess rgyb,

with no spaces? What happens when you use the same colors more

than once in the secret code? In the guess? What happens when you

type characters other than the prescribed r, g, y, c, b and w?

As you’re doing this, flaws will appear for a variety of reasons. Perhaps

there are missing scenarios or code examples. Some flaws may stem

from naive design choices. The reasons for these flaws are not impor-

tant. What is important is that the investment we’ve made to get this far

has been very, very small compared to an exhaustive up-front require-

ments gathering process. An interactive session with working software

is worth a thousand meetings.

4.6 What We Just Did

We began this chapter with a pre-existing set of passing scenarios,

passing code examples, and working code. We then set out to extend

the code to handle the next feature, submitting a guess to the system

and having the system mark that guess.

In introducing this feature, we met some interesting challenges and

learned some new techniques, including:

• Scenario outlines and tables to express like scenarios in a clean,

readable way.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/37/bin/mastermind.bat
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=74

WHAT WE JUST DID 75

• Refactoring examples and code together when requirements change,

so that we can embrace change and keep the bar green.

• Allowing some duplication between scenarios and code examples

in order to maintain quick fault isolation and good object design.

• Doing the simplest thing to get a failing code example to pass,

and channeling the urge to enhance the code into enhancing its

specifications first.

• Refactoring step definitions and code examples, keeping in mind

that expressiveness and localization are key factors in keeping

them maintainable.

• Exploratory testing to weed out bugs and edge cases that we might

not think of until we’re actually interacting with the software.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=75

Chapter 5

Evolving Existing Features
Welcome back! How was the exploratory testing? Did you discover any-

thing missing from the marking algorithm? There are certainly edge

cases that we missed. As you discovered each one, how did it make

you feel? Did you feel frustrated that we had done so much work to

produce something so incomplete? Or did you feel happy to make these

discoveries before showing your friends? Or perhaps you did show your

friends, and felt embarrassed when they discovered the bugs for you!

Now imagine that we had attempted to think through all of the edge

cases before. We might have gotten further along than we did. This

isn’t a very complex problem compared to many, but the likelihood is

that we’d not have thought of them all. And the companion likelihood is

that we would have done pretty much the same amount of exploratory

testing that we ended up doing. We just would have caught fewer faults.

So now that we have discovered some faults, let’s feed that learning

back into the process.

5.1 Adding New Scenarios

We’re now at the beginning of a new iteration, and it’s time to apply the

lessons learned from exploratory testing. One flaw that emerged was

that the marking algorithm does not handle duplicates properly when

duplicate pegs in the guess match a single peg in the secret code.

Here’s a Cucumber scenario that should help to clarify this:

Download mm/39/features/codebreaker_submits_guess.feature

Scenarios: dups in guess match color in code

| code | guess | mark |

Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/39/features/codebreaker_submits_guess.feature

ADDING NEW SCENARIOS 77

| r y g c | r y g g | bbb |

In this scenario, the first three pegs in the guess match the first three

pegs in the code, so they each get a black marker peg. The fourth peg in

the guess is the same color as the third peg. Since the third peg already

earned a black mark for matching the third peg in the guess, the fourth

peg should not get any mark at all.

Add this scenario to codebreaker_submits_guess.feature and run the fea-

ture with cucumber. Here’s the output:

| r y g c | r y g g | bbb |

expected ["Welcome to Mastermind!", "Enter guess:", "bbbw"]

to include "bbb" (Spec::Expectations::ExpectationNotMetError)

As you can see, the game is giving a black mark for the third peg in the

guess, and a white mark for the fourth!

Here’s another scenario we didn’t account for, but learned about through

exploratory testing:

Download mm/39/features/codebreaker_submits_guess.feature

Scenarios: dups in guess match color in code

| code | guess | mark |

| r y g c | r y g g | bbb |

| r y g c | r y c c | bbb |

The second scenario is similar to the first, but this time the third and

fourth pegs in the guess match the fourth peg in the secret code instead

of the third. In this case, we want the game to give a black marker for

the fourth peg in the guess and ignore the third. Here’s what we get

now:

| r y g c | r y c c | bbb |

expected ["Welcome to Mastermind!", "Enter guess:", "bbbw"]

to include "bbb" (Spec::Expectations::ExpectationNotMetError)

This is the same result as the first scenario.

Here’s a third scenario along the same lines, with a subtle difference.

This time neither of the duplicate pegs are in the right position in the

guess:

Download mm/39/features/codebreaker_submits_guess.feature

Scenarios: dups in guess match color in code

| code | guess | mark |

| r y g c | r y g g | bbb |

| r y g c | r y c c | bbb |

| r y g c | g y r g | bww |

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/39/features/codebreaker_submits_guess.feature
http://media.pragprog.com/titles/achbd/code/mm/39/features/codebreaker_submits_guess.feature
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=77

MANAGING INCREASING COMPLEXITY 78

The first green peg in the guess gets a white mark because it matches

a color in the code, but in the wrong position. The second peg in the

guess, yellow, matches the code in color and position, so it gets a black

mark. One black, one white.

The third peg in the guess, red, matches the first peg in the code, so it

gets a white mark. One black, two white.

Finally, the last peg in the guess is green. While it matches the color

of the third peg in the code, that peg was already accounted for by the

first green peg in the guess. So this last peg in the guess does not get a

mark at all. This leaves us with a mark of bww. At least that’s what we

expect. When we run the feature with this third new scenario, we see

this in the output:

| r y g c | g y r g | bww |

expected ["Welcome to Mastermind!", "Enter guess:", "bwww"]

to include "bww" (Spec::Expectations::ExpectationNotMetError)

5.2 Managing Increasing Complexity

We now have three brand new failing scenarios. Before this chapter

we’ve been blithely cruising down the happy path, but we are now faced

with sinister edge cases. And these new scenarios bring us to a whole

new level of complexity in the marking algorithm.

Not only do we need to account for each peg as we see it, but we have to

keep track of what we’ve already marked so that we don’t mark against

the same peg in the code twice. And to make things even more complex,

when we hit a peg that we want to give a white mark, we need to see if

it might earn a black mark later on!

OK. Settle down. We can do this. And not only can we do this, but we

can do this calmly, rationally, and safely, by refactoring the existing

design step by step.

The three new scenarios are failing due to logical errors, not syntax or

structural errors. We don’t need any new step definitions at this point.

The ones we have are working just fine. We just need to improve the

code, so let’s head right to RSpec. Again, we’ll start with an example

mirroring the first failing Cucumber scenario:

Download mm/39/spec/mastermind/game_spec.rb

context "with duplicates in the guess that match a peg in the code" do

context "by color and position" do

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/39/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=78

MANAGING INCREASING COMPLEXITY 79

Lessons learned while coaching

In March, 2009, after we had released the second beta of this
book, and before this chapter was written, I had the good for-
tune to run the first ever Chicago Ruby Brigade Coding Dojo.
Given that I was working on this tutorial, I used the Mastermind
marking algorithm as the problem to solve.

Much to everybody’s joy, about twenty minutes into it, all of the
scenarios (from the previous chapters) were passing. Much to
everybody’s dismay, that was all I had prepared for the session.
So we decided to explore these more complex scenarios, and
an interesting thing happened.

The first few scenarios had allowed for a very gradual increase
in complexity. But when it came to these new scenarios, the
leap was so severe that it was disorienting. We all, including me,
lost sight of the task at hand, forgot the principles we were try-
ing to put into practice, and launched into a theoretical algo-
rithm problem-solving session.

The step by step approach described in this chapter is the anti-
dote for that sort of blockage.

it "should add a single b to the mark" do

@game.start(%w[r y g c])

@messenger.should_receive(:puts).with("bbb")

@game.guess(%w[r y g g])

end

end

end

Which produces this failure:

1)

Spec::Mocks::MockExpectationError in 'Mastermind::Game \

marking a guess with duplicates in the guess that \

match a peg in the code by color and position should \

add a single b to the mark'

Mock 'messenger' expected :puts with ("bbb") but received it with (["bbbw"])

./39/spec/mastermind/game_spec.rb:49:

Finished in 0.003503 seconds

6 examples, 1 failure

To get this to pass, we need to make sure that we don’t add a white

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=79

REFACTORING IN THE GREEN 80

mark for the last peg in the guess. One way we could do this is to

keep track of each position in the secret code as we iterate through the

guess. We would begin by changing result to an array of four nils. If the

peg at guess[0] matches the peg at @code[0], then we replace result[0] with

a b.

If not, then we check the code to see if the peg is anywhere in the code

at all using @code.include?(peg). If it is in the code, then we discover

its position with @code.index(peg). Here’s where it gets interesting. We

then ask the result if it still has nil in that position. If not, then we know

it’s already been marked! If so, then we replace it with a w.

Once we’ve done all that, we get rid of any remaining nils before sorting

and joining the contents of the array to generate the mark.

Now this seems like a good plan, but the current design won’t support

it very easily. We’ll need to do some refactoring before we can add this

new capability. But there’s a catch. We have a failing example right

now, so we’d be refactoring in the red.

5.3 Refactoring In the Green

Here’s a great guideline to follow: only refactor when all of your exam-

ples are passing. We call this refactoring in the green, because we rely

on the green bar of passing examples to know that we’re preserving

behaviour as we go.

We just added a failing example. It’s failing because the design doesn’t

support the new expected behaviour, not because a change to the code

introduced a bug. We can therefore safely remove the example, refactor

in the green, and then restore the example when we’re done. But where

do we put it in the meantime?

Many folks just comment the example out. Do not do this! There is little

more unnerving than discovering an example that was commented out

months ago and forgotten about. RSpec offers a better solution in the

form of the pending() method.

Pending

To temporarily disable an example, but do so in such a way that you

won’t lose sight of it, add pending() to the example, like this:

Download mm/40/spec/mastermind/game_spec.rb

context "with duplicates in the guess that match a peg in the code" do

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/40/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=80

REFACTORING IN THE GREEN 81

context "by color and position" do

it "should add a single b to the mark" do

pending()

@game.start(%w[r y g c])

@messenger.should_receive(:puts).with("bbb")

@game.guess(%w[r y g g])

end

end

end

When you run the specs you’ll see something like this at the bottom of

the output:

Pending:

Mastermind::Game marking a guess with duplicates in the \

guess that match a peg in the code by color and position \

should add a single b to the mark (TODO)

./spec/mastermind/game_spec.rb:48

6 examples, 0 failures, 1 pending

Now every time you run the examples, you’ll be reminded that you have

a pending example waiting for your attention. There are actually three

different ways to use pending(). You can read about the others in detail

in Section 10.2, Pending Examples, on page 113.

Refactor towards the new design

Our goal now is to change the design such that it passes the same

code examples and scenarios, but better positions us to satisfy the

new requirements. For the next little while, we’re going to zip through

changing this code very quickly in very small steps. Be sure to run the

examples between every step. The reason we can move this quickly is

that the green bar tells us that we’re safe after every change we make.

We’ll discuss this more at the end of the chapter. Ready? Set? Go!

Step one:

Download mm/41/lib/mastermind/game.rb

Line 1 def guess(guess)
- result = []
- temp = [nil,nil,nil,nil]
- guess.each_with_index do |peg, index|
5 if @code[index] == peg
- result << "b"
- temp[index] = "b"
- elsif @code.include?(peg)
- result << "w"

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/41/lib/mastermind/game.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=81

REFACTORING IN THE GREEN 82

10 temp[index] = "w"
- end

- end

- @messenger.puts result.sort.join
- end

Here we add a new array named temp on line 3, and then assign it “b”

and “w” values at the current index on lines 7 and 10. This is prepara-

tory work. Nothing in the calculation has changed yet.

Step two (did you run the specs first?):

Download mm/42/lib/mastermind/game.rb

Line 1 def guess(guess)
- result = []
- temp = [nil,nil,nil,nil]
- guess.each_with_index do |peg, index|
5 if @code[index] == peg
- result << "b"
- temp[index] = "b"
- elsif @code.include?(peg)
- result << "w"

10 temp[index] = "w"
- end

- end

- @messenger.puts temp.sort.join
- end

Here we simply replace the result with temp on line 13. Run the specs.

Still passing!

Step 3: remove all the references to result.

Download mm/43/lib/mastermind/game.rb

def guess(guess)

temp = [nil,nil,nil,nil]

guess.each_with_index do |peg, index|

if @code[index] == peg

temp[index] = "b"

elsif @code.include?(peg)

temp[index] = "w"

end

end

@messenger.puts temp.sort.join

end

Run the specs. Still passing. Step 4: change temp to result.

Download mm/44/lib/mastermind/game.rb

def guess(guess)

result = [nil,nil,nil,nil]

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/42/lib/mastermind/game.rb
http://media.pragprog.com/titles/achbd/code/mm/43/lib/mastermind/game.rb
http://media.pragprog.com/titles/achbd/code/mm/44/lib/mastermind/game.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=82

REFACTORING IN THE GREEN 83

guess.each_with_index do |peg, index|

if @code[index] == peg

result[index] = "b"

elsif @code.include?(peg)

result[index] = "w"

end

end

@messenger.puts result.sort.join

end

Run the specs. Still passing. Now reinstate the pending example by

removing or commenting the pending() declaration and run them again.

Same failure as before, but we’ve made progress! We’re now interacting

with the structure we want internally, and we haven’t caused any of

the earlier examples to fail.

Check the scenarios

It turns out, however, that all of the earlier code examples involve

guessing all four colors in the secret code. The Cucumber scenarios

had examples with three, two, one and even no colors correct, so let’s

run codebreaker_submits_guess.feature and see where we are.

Scenarios: 3 colors correct

| code | guess | mark |

| r g y c | w g y c | bbb |

undefined method `<=>' for nil:NilClass (NoMethodError)

./44/features/support/../../lib/mastermind/game.rb:23:in `sort'

./44/features/support/../../lib/mastermind/game.rb:23:in `guess'

./44/features/step_definitions/mastermind.rb:21:in

`/^I guess (. . . .)$/'

44/features/codebreaker_submits_guess.feature:28:in

`When I guess w g y c'

There are actually quite a few scenarios failing like this, and they all

report the same problem: undefined method ‘<=>’ for nil:NilClass. This is

happening because we’re sorting all the elements in the array, but there

are still going to be nils in there unless we guess all four colors.

Heading back to RSpec, restore the pending() declaration to the exam-

ple of duplicates, and let’s add a new example that matches this first

scenario that we just broke:

Download mm/45/spec/mastermind/game_spec.rb

context "with three colors correct in the correct places" do

it "should mark the guess with bbb" do

@game.start(%w[r g y c])

@messenger.should_receive(:puts).with("bbb")

@game.guess(%w[r g y w])

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/45/spec/mastermind/game_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=83

REFACTORING IN THE GREEN 84

end

end

Run the examples and you’ll see this in the output:

1)

ArgumentError in 'Mastermind::Game marking a guess with three colors \

correct in the correct places should mark the guess with bbb'

comparison of String with nil failed

./45/spec/mastermind/../../lib/mastermind/game.rb:23:in `sort'

./45/spec/mastermind/../../lib/mastermind/game.rb:23:in `guess'

./45/spec/mastermind/game_spec.rb:49:

The comparison of String with nil failed message shows that the example

fails in the way we expected. And the fix is simple:

Download mm/46/lib/mastermind/game.rb

Line 1 def guess(guess)
- result = [nil,nil,nil,nil]
- guess.each_with_index do |peg, index|
- if @code[index] == peg
5 result[index] = "b"
- elsif @code.include?(peg)
- result[index] = "w"
- end

- end

10 @messenger.puts result.compact.sort.join
- end

We just compact the array before sorting and joining on line 10.

Now run the scenarios again, and you’ll find that we have successfully

refactored the design in order to better adapt to the new requirement.

We know that the refactoring was successful because all of the previ-

ously passing scenarios are still passing.

But don’t stop to bask in the glory just yet. We’re not quite finished.

While the previously passing scenarios and code examples are all pass-

ing, all three new scenarios are still failing. And if you get rid of the

pending() declaration, you’ll see that the new example is still failing.

Slide in the new change

Now that we’ve refactored towards the structure we want, and we’ve

used the Cucumber scenarios to help us prove that out, it’s time to add

the logic that we discussed earlier. There are two things we still need to

do:

• Put white marks in the position of the matching peg in the secret

code instead of the current index.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/46/lib/mastermind/game.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=84

REFACTORING IN THE GREEN 85

• Check to see that the peg we’re about to give a white mark for has

not already been given a black mark.

Step one:

Download mm/47/lib/mastermind/game.rb

def guess(guess)

result = [nil,nil,nil,nil]

guess.each_with_index do |peg, index|

if @code[index] == peg

result[index] = "b"

elsif @code.include?(peg)

result[@code.index(peg)] = "w"

end

end

@messenger.puts result.compact.sort.join

end

Run the specs and they all pass. Now remove the pending() declaration

and run them again. You’ll see that the example is still failing, but

now it’s failing differently. Instead of getting bbbw, we get bbw. Can

you see why this is happening? See if you can before reading the next

paragraph.

No, seriously.

The guess() method marks the first three pegs with a b, but then it

replaces the third b with a w when it evaluates the fourth peg in the

guess. So now we’re only one step away from getting this to pass. And

here is that step:

Download mm/48/lib/mastermind/game.rb

Line 1 def guess(guess)
- result = [nil,nil,nil,nil]
- guess.each_with_index do |peg, index|
- if @code[index] == peg
5 result[index] = "b"
- elsif @code.include?(peg)
- result[@code.index(peg)] ||= "w"
- end

- end

10 @messenger.puts result.compact.sort.join
- end

We simply change the assignment on line 7 to a conditional assignment

using ||=. For those new to Ruby, this will only assign the value if it is

currently nil or false.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/mm/47/lib/mastermind/game.rb
http://media.pragprog.com/titles/achbd/code/mm/48/lib/mastermind/game.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=85

WHAT WE JUST DID 86

Now run the specs. They all pass. Now run the feature. All the scenarios

are passing.

5.4 What we just did

In this chapter we added new scenarios to an existing feature. We

modified the code in baby steps, refactoring in the green nearly the

whole time. This sort of approach can seem exhausting at first. We only

changed a few lines of code, why not just change them all at once and

be done with it?

The truth is that most experienced TDD practitioners will stray from

this granularity and make changes in larger strokes, but they have the

wisdom to recognize quickly whether those changes are heading them

in the right direction. Once they do, they typically back up to the last

known good state, run the examples and watch them pass, and then

start again, but this time with smaller steps. But you’ve got to learn to

walk before you can run.

You also learned how to temporarily disable an example with the pend-

ing() method. This is one of the many tools that RSpec includes to make

the process of driving out code with examples a more pleasurable and

productive one.

In the next and last chapter of this tutorial, we’ll take the next step

in making the Mastermind game real by driving out a random code

generator with Cucumber and RSpec. Before we move on though, were

there any other defects in the marking algorithm that you found in your

own exploratory testing? If so, add some new scenarios to reflect them.

If they fail, drive out the changes on your own, trying to stay in the

green as much as possible.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=86

Chapter 6

Random Expectations
Coming soon ...

Prepared exclusively for Simone Joswig

Part II

Behaviour Driven Development

88
Prepared exclusively for Simone Joswig

Chapter 7

The Case for BDD
Most of the software we write will never get used. It’s nothing personal—

it’s just that as an industry we are not very good at giving people what

they want. It turns out that the underlying reason for this is that tradi-

tional software methods are set up to fail—they actually work against

us. Heroic individuals deliver software in spite of their development

process rather than because of it. In this chapter we look at how and

why projects fail, and shine a spotlight on some of the challenges facing

Agile development.

7.1 How traditional projects fail

Traditional projects fail for all sorts of reasons. A good way to identify

the different failure modes is to ask your project manager what keeps

them up at night. (It’s nice to do this from time to time anyway—it helps

their self-esteem.) It is likely your project manager will come up with a

list of fears similar to ours:

Delivering late or over budget

We estimate, we plan, we have every contingency down to the nth degree

and then much to our disappointment real life happens. When we slip

the first date no-one minds too much. I mean, it will only be a couple

of weeks. If it goes on for long enough—slipping week by week and

month by month—enough people will have left and joined that we can

finally put the project out of its misery. Eighteen months to two years

is usually enough. This is software that doesn’t matter.

Prepared exclusively for Simone Joswig

HOW TRADITIONAL PROJECTS FAIL 90

Delivering the wrong thing

Most of us use software that was delivered late and over budget—on

our desktops, in our mobile phones, in our offices and homes. In fact

we have become used to systems that update themselves with bugfixes

and new features in the form of service packs and system updates, or

websites that grow new features over time. But none of us use software

that doesn’t solve the problem we have.

It is surprising how much project management effort is spent looking

after the schedule or budget when late software is infinitely more useful

than irrelevant software.

So how does this happen? Maybe the requirements changed after we

agreed to them because the business moved on. Perhaps they weren’t

clear enough in the first place. It might be that we delivered what the

business asked for rather than what they needed. In any case we put a

load of effort into delivering the project, within budget and on time, but

it turns out no-one will actually get any benefit from it. This is software

that doesn’t matter.

Unstable in production

Hooray! The project came in on time and on budget, the users looked at

it and decided they like it, so we put it into production. The problem is

it crashes twice a day. We think it’s a memory thing, or a configuration

thing, or a clustering thing, or an infrastructure thing, or—but who

are we kidding? We don’t really know what’s causing it except that it’s

rather embarrassing and it’s costing us a lot of money. If only we’d

spent more time testing it. People will use this once and then give up

when it keeps crashing. This is software that doesn’t matter.

Costly to maintain

There are a number of things we don’t need to consider if we are writ-

ing disposable software. Maintainability is one of them. However if we

expect to follow Release 1 with a Release 2, Release 3, or even a 2009

Professional Super Cow Power Edition then we can easily paint our-

selves into a corner by not considering downstream developers.

For a start they probably weren’t involved in the early releases and

aren’t privy to the decisions and conversations that led to the cur-

rent design. If the code isn’t obvious they will struggle to understand

it. Similarly if the design isn’t obvious—if there is lots of coupling or

unnecessary redundancy, if lots of chunks were copied and pasted and

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=90

WHY TRADITIONAL PROJECTS FAIL 91

changed slightly—then they will struggle to work out the implications of

the changes they make, which is a surefire way to introduce regression

defects.

Over time the rate at which they can introduce new features will dimin-

ish until they end up spending more of their time tracking down unex-

pected regressions and unpicking spaghetti code than actually getting

work done. At some point the software will cost more to improve than

the revenue it can generate. This is software that doesn’t matter.

7.2 Why traditional projects fail

Most of these failure modes happen with smart people trying to do

good work. For the most part software people are diligent and well-

intentioned, as are the stakeholders they are delivering to, which makes

it especially sad when we see the inevitable “blame-storming” that fol-

lows in the wake of another failed delivery. It also makes it unlikely that

project failures are the results of incompetence or inability—there must

be another reason.

Perhaps these types of failure are an inevitable outcome of the approach

we have been taking—the traditional or waterfall method of software

delivery. No matter how smart or well-intentioned people are, things

are set up for them to fail, and it is only by superhuman efforts that

software gets delivered at all.

How traditional projects work

Most software projects go through the familiar sequence of Planning,

Analysis, Design, Code, Test, Deploy. Your process may have different

names but the basic activities in each phase will be fairly consistent.

(We are assuming some sort of business justification has already hap-

pened, although even that isn’t always the case.)

We start with the Planning phase: how many people, how long for, what

resources will they need, basically how much will it cost to deliver this

project and how soon will we see anything?

Then we move into an Analysis phase. This is where we articulate in

detail the problem we are trying to solve, ideally without prescribing

how it should be solved, although this is almost never the case.

Then we have a Design phase. This is where we think about how we can

use a computer system to solve the problem we articulated in Analy-

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=91

WHY TRADITIONAL PROJECTS FAIL 92

sis. During this phase we think about design and architecture, large-

and small-scale technical decisions, the various standards around the

organization, and we gradually decompose the problem into manage-

able chunks for which we can produce functional specifications.

It appears to be a point of pride that—unless they are following a pub-

lished methodology like Prince 2—each organization will have its own

custom TLAs1 to describe the documents that form the inputs and out-

puts of the Analysis and Design phases.

Now we move onto the Coding phase, where we write the software that

is going to solve the problem, according to the specifications that came

out of the Design phase. A common assumption by the program board

at this stage is that it’s all plain sailing from here because all the hard

thinking has been done. This isn’t as mean as it sounds—what they are

saying is we have now made the activities of programming and testing

relatively low risk because we did so much upfront planning, analysis

and design. This is why so many organizations think it’s ok to have their

programming and testing carried out by offshore, third party vendors.

Now because we are responsible adults we have a Testing phase where

we test the software to make sure it does what it was supposed to do.

This phase contains activities with names like User Acceptance Testing

or Performance Testing to emphasise that we are getting closer to the

users now and the final delivery.

Eventually we reach the Deployment phase where we deploy the appli-

cation into production. With a suitable level of fanfare the new software

glides into production and starts making us money!

All these phases are necessary. You can’t start solving a problem you

haven’t articulated; you can’t start implementing a solution you haven’t

described; you can’t test software that doesn’t exist and you can’t (or

at least shouldn’t) deploy software that hasn’t been tested. Of course in

reality you can do any of these things but it usually ends in tears.

How traditional projects really work

We have delivered projects in pretty much this way since we first started

writing computer systems. There have been various attempts at improv-

ing the process and making it more efficient and less error-prone, using

1. TLA is a three-letter acronym meaning Three-Letter Acronym, and so is itself a TLA.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=92

WHY TRADITIONAL PROJECTS FAIL 93

documents for formalised hand-offs, creating templates for the docu-

ments that make up those hand-offs, assembling review committees

for the templates for the documents, establishing standards and for-

malised accreditation for the review committees You can certainly

see where the effort has gone.

The reason for all this ceremony around hand-offs, reviews, and such-

like is that the later in the software delivery lifecycle we detect a defect—

or introduce a change—the more expensive it is to put right. And not

just a little more—in fact empirical evidence over the years has shown

that it is exponentially more expensive the later you find out. With this

in mind it makes sense to front-load the process. We want to make sure

we have thought through all the possible outcomes and covered all the

angles early on so we aren’t surprised by “unknown unknowns” late in

the day.

There are also, of course, the questions of accountability and respon-

sibility when things do inevitably go wrong. In an organization with a

traditional blame culture each group needs to be able to demonstrate

that it wasn’t their fault: the analysts, the architects, the programmers,

testers, operations team and ultimately the project manager. They do

that by getting a group of people to sign a declaration that an artifact—

a project plan, a requirements document, a functional specification,

some code—meets the appropriate level of assurance. If anything goes

wrong now, it must be because of human error (i.e. incompetence, and

more importantly someone else’s incompetence) later in the process.

But this isn’t the whole story. However diligent we are at each of the

development phases, anyone who has delivered software in a traditional

way will attest to the amount of work that happens “under the radar.”

The program team signs off the project plan, resplendent in its detail,

dependencies, resource models, and Gantt charts. Then the analysts

start getting to grips with the detail of the problem and say things like:

“hmm, this seems to be more involved than we thought. We’d better

re-plan, this is going to be a biggie.”

Then the architects start working on their functional specifications,

which uncover a number of questions and ambiguities about the require-

ments. How does this data relate to that screen? What happens if this

message isn’t received by that other system? Sometimes the analysts

can immediately answer the question but more often it means we need

more analysis and hence more time from the analysts. Better update

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=93

WHY TRADITIONAL PROJECTS FAIL 94

that plan. And get it signed off. And sign off the new, enhanced require-

ments document.

You can see how this coordination cost can rapidly mount up. Of course

it really kicks off during the testing phase. When the tester raises a

defect, the programmer throws his hands in the air and says he did

what was in the functional spec, the architect blames the business

analyst, and so on right back up the chain. It’s easy to see where this

exponential cost comes from.

As this back-and-forth becomes more of a burden, we become more

afraid of making changes, which means people do work outside of the

process and documents get out of sync with one another and with the

software itself. Testing gets squeezed, people work late into the night,

and the release itself is usually characterized by wailing and gnashing

of teeth, bloodshot eyes, and multiple failed attempts at decyphering

the instructions in the release notes.

This is compounded by the fact that people typically work on one phase

of a project and then move on, so by the time the tester is pointing out

the defects the business analyst has long since joined a different project

and is no longer available.

If you ask experienced software delivery folks why they run a project

like that, front-loading it with all the planning and analysis, then get-

ting into the detailed design and programming, and only really integrat-

ing and testing it at the end, they will gaze into the distance, looking

older than their years, and patiently explain that this is to mitigate

against the exponential cost of change. This top-down approach seems

the only sensible way to hedge against the possibility of discovering a

defect late in the day.

A self-fulfilling prophecy

To recap, projects become exponentially more expensive to change the

further we get into them, due to the cumulative effect of keeping all

the project artifacts in sync, so we front-load the process with lots of

risk-mitigating planning, analysis and design activities to reduce the

likelihood of rework.

Now, how many of these artifacts—the project plan, the requirements

specification, the high- and low-level design documents, the software

itself—existed before the project began? That’s right, exactly none! So

all that effort—that exponentially increasing effort—occurs because we

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=94

WHY TRADITIONAL PROJECTS FAIL 95

Bottom-up and Top-down development

In the 1990s, recognising that project failures were a fact
of life, a different approach started to emerge, led by the
technologists—the architects and programmers—rather than
the process people. Instead of worrying about nailing down
all the requirements they decided that reuse was the ultimate
objective and set about constructing technical frameworks
and component libraries that would do everything. That way
the analysts would simply be pulling together existing business
components (an Account Holder, an Account, an Order) and
wiring them up to do new and clever things. They just needed
to design comprehensive enough versions of all these busi-
ness concepts and come up with sophisticated enough frame-
works.

They called this approach bottom-up in contrast to the top-
down method. They eventually discovered there is no such ’ulti-
mate Order implementation’ that would be all-encompassing,
because we model orders differently in different contexts. This
isn’t accidental: there are some contexts in which certain
things about an order are significant and others simply aren’t.
(Do I care about the contents of the order or just its value?
Is currency significant? What are the business rules for audit
and compliance? What about non-repudiation—do I need to
prove who placed the order?) If we had an Order implemen-
tation that could cope with every eventuality it would be com-
pletely unworkable.

run projects the way we do! So now we have a chicken-and-egg situation—

or a reinforcing loop in Systems Thinking terminology. The irony of the

traditional project approach is that the process itself causes the expo-

nential cost of change!

When we ask our project managers how they know about this exponen-

tial cost of change they tell us it is “through experience.” They have seen

enough projects in enough situations going through the same pain. Our

industry’s response to this has traditionally been to become better at

reinforcing the loop rather than trying something that might break the

cycle altogether. However software development is still a very young

industry, so where did this cost curve come from in the first place?

Digging a little deeper, it turns out the curve originates in civil engineer-

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=95

REDEFINING THE PROBLEM 96

ing. It makes sense that you might want to spend a lot of time in the

design phases of a bridge or a ship. You wouldn’t want to get two thirds

of the way through building a hospital only to have someone point out

it should be 20 metres to the left. Once the reinforced concrete pillars

are sunk and the cast iron infrastructure is in place, things become

very expensive to put right!

However, these rules only apply to software development because we

let them! Software is, well, soft. It is supposed to be the part that’s

easy to change, and with the right approach and some decent tooling

it can be very malleable. So by using the metaphor of civil engineering

and equating software with steel and concrete, we’ve done ourselves a

disservice.

7.3 Redefining the problem

It’s not all doom and gloom though. There are many teams out there

delivering projects on time, within budget, and delighting their stake-

holders, and they manage to do it again and again. It’s not easy. It takes

discipline and dedication, and relies on a high degree of communication

and collaboration, but it is possible. People who work like this tend to

agree it is also a lot of fun!

Behaviour-driven development is one of a number of Agile methodolo-

gies. Specifically it is a second generation Agile methodology, building

on the work of the really smart guys. Let’s look at how these Agile

methods came about and how they address traditional project risks,

then we can see how BDD allows us to concentrate on writing software

that matters.

A brief history of Agile

Since we first started delivering software as projects there has been a

small but persistent community of software professionals asking them-

selves the same questions. Why do so many software projects fail? Why

are we so consistently bad at delivering software? Why does it seem to

happen more on larger projects with bigger teams? And can anything

be done about it?

Independently they developed a series of lightweight methodologies whose

focus was on delivering working software to users, rather than produc-

ing reams of documents or staging ceremonial reviews to show how

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=96

REDEFINING THE PROBLEM 97

robust their processes were. They found they could cut through a lot of

organizational red tape just by putting everyone in the same room.

Now this was a self-selecting group of people. Their irreverence for the

status quo wasn’t to everyone’s taste, and the various practitioners

found themselves described as “cowboys” or “amateurs” by the estab-

lished order. How could they estimate the work without carrying out a

comprehensive function point analysis first?2 What madness was it to

start programming without a complete set of detailed design specifica-

tions? Hadn’t they heard of the exponential cost of change?

Then in early 2001 a few of these practitioners got together in a cabin

in Snowbird, Utah, recognising that their various methodologies were

more similar than they were different. They used different terminol-

ogy and day-to-day practices but the underlying values were largely

the same. They realized they could reach a much wider audience with a

consistent brand—albeit with their own flavours to differentiate themselves—

and they settled on the word “Agile.”

They produced a short manifesto describing their common position.

You might well have seen it before but it is worth reproducing here

because it describes the common ground so perfectly.3

The Agile Manifesto

We are uncovering better ways of developing software by doing it and

helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the things on the right, we value the things

on the left more.

The Agile Manifesto is empirical—it’s based on real experience: “We are

uncovering better ways ... by doing it.” Also notice that it doesn’t dis-

miss traditional ideas like documentation and contracts—a criticism

often levelled at Agile methods—but rather it expresses a preference for

2. Function point analysis is a measure of design complexity developed in the 1970s

by IBM for the purpose of estimating software projects. You don’t want to know how it

works.

3. You can find the Agile Manifesto online at http://agilemanifesto.org

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://agilemanifesto.org
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=97

REDEFINING THE PROBLEM 98

something different: something lighter weight and more directly rele-

vant to the customer or stakeholder.

Following the manifesto’s publication in 2001, the term “Agile” has been

taken up across the industry and has started to become mainstream,

with many blue chip organizations and large technology consultancies

professing at least some Agile expertise. Whether this is due to them

understanding and valuing the underlying principles of Agile or simply

a marketing ruse to dress up the same old tired processes is left as an

exercise for the reader.

How Agile methods address project risks

The authors of the manifesto go further than just the few lines quoted

above. They also documented the principles underpinning their think-

ing. Central to these is a desire to “deliver working software frequently,

from a couple of weeks to a couple of months, with a preference to the

shorter timescale.”

Imagine for a moment you could do this, namely delivering production-

quality software every two weeks to your stakeholders, on your current

project, in your current organization, with your current team, start-

ing tomorrow. How would this address the traditional delivery risks we

outlined at the start of the chapter?

No longer delivering late or over budget

Since we are delivering the system in tiny, one- or two-week iterations

or mini-projects, using a small, fixed-size team, it is easy to calculate

our project budget: it is simply the burn rate of the team times the

number of weeks, plus some hardware and licenses.

Provided we start with a reasonable guess at the overall size of the

project, that is how much we are prepared to invest in solving the busi-

ness problem in the first place, and we prioritise the features appropri-

ately, then the team can deliver the really important stuff in the early

iterations. (Remember, we are delivering by feature not by module.) So

as we get towards the point when the money runs out, we should by

definition be working on lower priority features. Also we can measure

how much we actually produce in each iteration, known as our velocity

or throughput, and use this to predict when we are really likely to finish.

If, as we approach the deadline, the stakeholders are still having new

ideas for features and seeing great things happening, they may choose

to fund the project for a further few iterations. Conversely they may

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=98

REDEFINING THE PROBLEM 99

decide before the deadline that enough of the functionality has been

delivered that they want to finish up early and get a release out. This is

another option they have.

No longer delivering the wrong thing

We are delivering working software to the stakeholders every two weeks

(say), which means we are delivering demonstrable features. We don’t

have a two week “database schema iteration” or “middleware iteration.”

After each iteration we can demonstrate the new features to the stake-

holders and they can make any tweaks or correct any misunderstand-

ings while the work is still fresh in the development team’s mind. These

regular, small-scale micro-corrections ensure that we don’t end up sev-

eral months down the line with software that simply doesn’t do what

the stakeholders wanted.

To kick off the next iteration we can get together with the stakeholders

to reassess the priorities of the features in case anything has changed

since last time.4 This means any new ideas or suggestions can get

scheduled, and the corresponding amount of work can be descoped

(or extra time added.)

No longer unstable in production

We are delivering every iteration, which means we have to get good

at building and deploying the application. In fact we rely heavily on

process automation to manage this for us. It is not uncommon for an

experienced Agile team to produce over 100 good software builds every

week.

In this context, releasing to production or testing hardware can be

considered just another build to just another environment. Application

servers are automatically configured and initialized; database schemas

are automatically updated; code is automatically built, assembled and

deployed over the wire; all manner of tests are automatically executed

to ensure the system is behaving as expected.

In fact in an Agile environment, the relationship between the devel-

opment team and the downstream operations and DBA folks is often

much healthier and more supportive.

4. In practice the planning session often follows directly after the showcase for the pre-

vious iteration.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=99

THE COST OF GOING AGILE 100

No longer costly to maintain

This last one is one of the biggest tangible benefits of an Agile process.

After their first iteration the team is effectively in maintenance mode.

They are adding features to a system that “works” so they have to be

very careful.

Assuming they can solve the issues of safely changing existing code so

as not to introduce regression defects, their working practices should

be exactly the same as downstream support developers. It is not uncom-

mon for an Agile development team to be working on several versions

of an application simultaneously, adding features to the new version,

providing early live support to a recently-released version, and provid-

ing bug fixing support to an older production version (because we still

make mistakes, and the world still moves on!)

7.4 The cost of going Agile

So this is great news! By rethinking the way we approach project deliv-

ery we’ve managed to comprehensively address all our traditional project

risks. Instead of seeing a project as a linear sequence of activities that

ends up with a big delivery, we find things work better if we deliver

frequently in short iterations. So why isn’t everyone doing this?

The obvious but unpopular answer is: because it’s really hard! Or rather,

it’s really hard to do well. Delivering production quality software week

after week takes a lot of discipline and practice. For all their systemic

faults, traditional software processes cause you to focus on certain

aspects of a system at certain times. In an Agile process the training

wheels come off and the responsibility now lies with you. That auton-

omy comes at a cost!

If we want to deliver working software frequently—as often as every

week on many projects—there are a number of new problems we need

to solve. Luckily Agile has been around for long enough that we have

an answer to many of these problems, or at least understand them

well enough to have an opinion about them. Let’s look at some of the

challenges of Agile, then we will see how BDD addresses them.

Outcome-based planning

The only thing we really know at the beginning of a project is that we

don’t know very much and that what we do know is subject to change.

Much like steering a car, we know the rough direction but we don’t

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=100

THE COST OF GOING AGILE 101

know every detailed nuance of the journey, such as exactly when we

will turn the steering wheel or by how many degrees. We need to find a

way to estimate the cost of delivering a project amongst all this uncer-

tainty and accept that the fine details of the requirements are bound to

change, and that that’s ok.

Streaming requirements

If we want to deliver a few features every week or two we have to start

describing requirements in a way that supports this. The traditional

requirements process tends to be document-based, where the business

analyst takes on the role of author and produces a few kilos of require-

ments.

Instead of this batch delivery of requirements we need to come up with

a way to describe features that we can feed into a more streamlined

delivery process.

Evolving design

In a traditional process the senior techies would come up with The

Design (with audible capitals, most likely based on The Standards).

Before we were allowed to start coding they would have produced high

level designs, detailed designs and probably class diagrams describing

every interaction. Each stage of this would be signed off. In an Agile

world the design needs to flex and grow as we learn more about the

problem and as the solution takes shape. This requires rethinking the

process of software design.

Changing existing code

Traditional programming is like building little blocks for later assembly.

We write a module and then put it to one side while we write the next

one, and so on until all the modules are written. Then we bring all the

modules together in a (usually painful) process called Integration. An

Agile process requires us to keep revisiting the same code as we evolve

it to do new things.

Because we take a feature-wise approach to delivery rather than a

module-wise one, we will often need to add new behavour to existing

code. This isn’t because we got it “wrong” the first time, but because

the code is currently exactly fit for purpose, and we need the applica-

tion to do more now. Refactoring, the technique of restructuring code

without changing its observable behaviour, is probably the place where

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=101

THE COST OF GOING AGILE 102

most advances have been made in terms of tool support and automa-

tion, especially with statically-typed languages like Java and C#.

Frequent code integration

Integrating code ahead of a testing cycle is a thankless and fraught

task. All the individual modules “work”—just not together! Imagine

doing this every single month? Or every week? What about potentially

several times every day? This is the frequency of integration an itera-

tive process demands: frequent enough that it is known as continuous

integration.

Continual regression testing

Whenever we add a new feature it might affect many parts of the code-

base. We are doing feature-wise development so different parts of the

codebase are evolving at different rates, depending on the kind of fea-

ture we are implementing. When we have a single feature the system

is easy to test. When we add the one hundredth feature we suddenly

have to regression test the previous ninety-nine. Imagine when we add

the two hundredth feature—or the one thousandth! We need to get

really good at regression testing otherwise we will become ever slower

at adding features to our application.

Frequent production releases

This is one of the hardest challenges of Agile software delivery, because

it involves co-ordination with the downstream operations team. Things

are suddenly outside of the team’s control. All the other aspects: stream-

ing requirements, changing design and code, frequent integration and

regression testing, are behaviours we can adopt ourselves.

Getting software into formally-controlled environments puts us at odds

with the corporate governance structures. But if we can’t get into pro-

duction frequently, there is arguably little value in all the other stuff.

It may still be useful for the team’s benefit, but software doesn’t start

making money until it’s in production. Remember, we want to be writ-

ing software that matters!

Co-located team

To make this all work you can’t afford for a developer to be waiting

around for her manager to talk to someone else’s manager to get per-

mission for her to talk to them. The turnaround is just too slow. There

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=102

WHAT HAVE WE LEARNED? 103

are organisational and cultural changes that need to happen in order

to shorten the feedback cycles to minutes rather than days or weeks.

The kind of interactions we require involve the whole team sitting together,

or at least as near one another as possible. It simply isn’t effective to

have the programmers in one office, the project managers in another

and the testers elsewhere, whether along the corridor or in a different

continent.

7.5 What have we learned?

There are a number of different ways in which traditional software

projects fail, and these failures are intrinsic to the way the projects

are run. The result of “process improvement” on traditional projects is

simply to reinforce these failure modes and ironically make them even

more likely.

An analysis of this approach to running software projects leads back to

the exponential cost curve that originated in the world of civil engineer-

ing, where things are made of steel and concrete. Being aware of this,

a number of individuals in the IT industry had been spending some

time wondering what software delivery might look like if they ignored

the constraints of thinking like civil engineers.

A group of software practitioners have suggested that taking an iter-

ative, collaborative approach to software delivery could systemically

eliminate the traditional risks that project managers worry about. They

call this approach Agile.

It isn’t all plain sailing, however, and adopting an Agile approach intro-

duces a host of new challenges itself. There is no free lunch!

In the next chapter we look at how BDD responds to these challenges

and allows us to concentrate on writing software that matters.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=103

Chapter 8

Writing Software that Matters
Coming soon ...

Prepared exclusively for Simone Joswig

Chapter 9

Mock Objects
Coming soon ...

Prepared exclusively for Simone Joswig

Part III

RSpec

106
Prepared exclusively for Simone Joswig

Chapter 10

Code Examples
In this part of the book, we’ll explore the details of RSpec’s built-in

expectations, mock objects framework, command line tools, IDE inte-

gration, extension points, and even show you how to integrate RSpec

with Test::Unit so that you can take advantage of the myriad extensions

that are written for both frameworks.

Our goal is to make Test Driven Development a more joyful and produc-

tive experience with tools that elevate the design and documentation

aspects of TDD to first class citizenship. Here are some words you’ll

need to know as we reach for that goal:

subject code The code whose behaviour we are specifying with RSpec.

expectation An expression of how the subject code is expected to behave.

You’ll read about state based expectations in Chapter 11, Expec-

tations, on page 128, and interaction expectations in Chapter 12,

Mocking in RSpec, on page 151.

code example An executable example of how the subject code can be

used, and its expected behaviour (expressed with expectations) in

a given context. In BDD, we write the code examples before the

subject code they document.

The example terminology started with Brian Marick, whose web-

site is even named http://exampler.com. Using “example” instead of

“test” reminds us that the writing them is a design and documen-

tation practice, even though once they are written and the code is

developed against them they become regression tests.

example group A group of code examples.

Prepared exclusively for Simone Joswig

http://exampler.com

DESCRIBE IT! 108

Familiar structure, new nomenclature

If you already have some experience with Test::Unit or similar
tools in other languages and/or TDD, the words we’re using here
map directly to words you’re already familiar with:

• Assertion becomes Expectation.

• Test Method becomes Code Example.

• Test Case becomes Example Group.

In addition to finding these new names used throughout this
book, you’ll find them in RSpec’s code base as well.

spec, a.k.a. spec file A file that contains one or more example groups.

In this chapter you’ll learn how to organize executable code examples

in example groups in a number of different ways, run arbitrary bits of

code before and after each example, and even share examples across

groups.

10.1 Describe It!

RSpec provides a Domain Specific Language for specifying the behaviour

of objects. It embraces the metaphor of describing behaviour the way we

might express it if we were talking to a customer, or another developer.

A snippet of such a conversation might look like this:

You: Describe a new account

Somebody else: It should have a balance of zero

Here’s that same conversation expressed in RSpec:

describe "A new Account" do

it "should have a balance of 0" do

account = Account.new

account.balance.should == Money.new(0, :USD)

end

end

We use the describe() method to define an example group. The string we

pass to it represents the facet of the system that we want to describe

(a new account). The block holds the code examples that make up that

group.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=108

DESCRIBE IT! 109

Joe Asks. . .

Where are the objects?

The declarative style we use to create code examples in exam-
ple groups is designed to keep you focused on documenting
the expected behaviour of an application.

While this works quite well for many, there are some who find
themselves distracted by the opacity of this style. If you fall in
the latter category, or if you are looking to write custom exten-
sions,∗ you may want to know what the underlying objects are.

The describe() method creates a subclass of
Spec::Example::ExampleGroup. The it() method defines a method
on that class, which represents a code example.

While we don’t recommend it, it is possible to write code exam-
ples in example groups using classes and methods. Here is the
new account example expressed that way:

class NewAccount < Spec::Example::ExampleGroup
def should_have_a_balance_of_zero

account = Account.new
account.balance.should == Money.new(0, :USD)

end
end

RSpec interprets any method that begins with “should_” to be
a code example.

∗. See Section 15.2, Custom Example Groups, on page 179 to learn about
writing custom example group classes.

The it() method defines a code example. The string passed to it describes

the specific behaviour we’re interested in specifying about that facet

(should have a balance of zero). The block holds the example code that

exercises the subject code and sets expectations about its behaviour.

Using strings like this instead of legal Ruby class names and method

names provides a lot of flexibility. Here’s an example from RSpec’s own

code examples:

it "should match when value < (target + delta)" do

be_close(5.0, 0.5).matches?(5.49).should be_true

end

This is an example of the behaviour of code, so the intended audience is

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=109

DESCRIBE IT! 110

someone who can read code. In Test::Unit, we might name the method

test_should_match_when_value_is_less_than_target_plus_delta, which is pretty

readable, but the ability to use non-alpha-numeric characters makes

the name of this example more expressive.1

To get a better sense of how you can unleash this expressiveness, let’s

take a closer look at the describe() and it() methods.

The describe() method

The describe() method can take an arbitrary number of arguments and

a block, and returns a subclass of Spec::Example::ExampleGroup.2 We

generally only use one or two arguments, which represent the facet

of behaviour that we wish to describe. They might describe an object,

perhaps in a pre-defined state, or perhaps a subset of the behaviour

we can expect from that object. Let’s look at a few examples, with the

output they produce so we can get an idea of how the arguments relate

to each other.

describe "A User" { ... }

=> A User

describe User { ... }

=> User

describe User, "with no roles assigned" { ... }

=> User with no roles assigned

describe User, "should require password length between 5 and 40" { ... }

=> User should require password length between 5 and 40

The first argument can be either a reference to a Class or Module, or a

String. The second argument is optional, and should be a String. Using

the class/module for the first argument provides an interesting benefit:

when we wrap the ExampleGroup in a module, we’ll see that module’s

name in the output. For example, if User is in the Authentication mod-

ule, we could do something like this:

module Authentication

describe User, "with no roles assigned" do

The resulting report would look like this:

1. activesupport-2.2 introduced support for test "a string" do...end syntax, so you can get

the basic benefit of strings out of the box in rails-2.2 or later.

2. As you’ll see later in Chapter 15, Extending RSpec, on page 177, you can coerce the

describe() method to return your own custom ExampleGroup subclass.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=110

DESCRIBE IT! 111

Authentication::User with no roles assigned

So by wrapping the ExampleGroup in a Module, we see the fully qual-

ified name Authentication::User, followed by the contents of the second

argument. Together, they form a descriptive string, and we get the fully

qualified name for free. This is a nice way to help RSpec help us to

understand where things live as we’re looking at the output.

You can also nest example groups, which can be a very nice way of

expressing things in both input and output. For example, we can nest

the input like this:

describe User do

describe "with no roles assigned" do

it "should not be allowed to view protected content" do

This produces output like this:

User with no roles assigned

- should not be allowed to view protected content

Or, with the --nested flag on the command line, the output looks like

this:

User

with no roles assigned

should not be allowed to view protected content

To understand this example better, let’s explore describe()’s yang, the

it() method.

What’s it() all about?

Similar to describe(), the it() method takes a single String, an optional

Hash and an optional block. The String should be a sentence that, when

prefixed with “it,” represents the detail that will be expressed in code

within the block. Here’s an example specifying a stack:

describe Stack do

before(:each) do

@stack = Stack.new

@stack.push :item

end

describe "#peek" do

it "should return the top element" do

@stack.peek.should == :item

end

it "should not remove the top element" do

@stack.peek

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=111

DESCRIBE IT! 112

@stack.size.should == 1

end

end

describe "#pop" do

it "should return the top element" do

@stack.pop.should == :item

end

it "should remove the top element" do

@stack.pop

@stack.size.should == 0

end

end

end

This is also exploiting RSpec’s nested example groups feature to group

the examples of pop() separately from the examples of peek().

When run with the --format nested command line option, this would pro-

duce the following output.

Stack

#peek

should return the top element

should not remove the top element

#pop

should return the top element

should remove the top element

Looks a bit like a specification, doesn’t it? In fact, if we reword the

example names without the word “should” in them, we can get output

that looks even more like documentation:

Stack

#peek

returns the top element

does not remove the top element

#pop

returns the top element

removes the top element

What? No “should?” Remember, the goal here is readable sentences.

“Should” was the tool that Dan used to get people writing sentences,

but is not itself essential to the goal.

The ability to pass free text to the it() method allows us to name and

organize examples in meaningful ways. As with describe(), the String

can even include punctuation. This is a good thing, especially when

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=112

PENDING EXAMPLES 113

we’re dealing with code-level concepts in which symbols have important

meaning that can help us to understand the intent of the example.

10.2 Pending Examples

In Test Driven Development: By Example [Bec02], Kent Beck suggests

keeping a list of tests that you have yet to write for the object you’re

working on, crossing items off the list as you get tests passing, and

adding new tests to the list as you think of them.

With RSpec, you can do this right in the code by calling the it() method

with no block. Let’s say that we’re in the middle of describing the

behaviour of a Newspaper:

describe Newspaper do

it "should be black" do

Newspaper.new.colors.should include('black')

end

it "should be white" do

Newspaper.new.colors.should include('white')

end

it "should be read all over"

end

RSpec will consider the example with no block to be pending. Running

these examples produces the following output

Newspaper

- should be black

- should be white

- should be read all over (PENDING: Not Yet Implemented)

Pending:

Newspaper should be read all over (Not Yet Implemented)

Called from newspaper.rb:20

Finished in 0.006682 seconds

3 examples, 0 failures, 1 pending

As you add code to existing pending examples and add new ones, each

time you run all the examples RSpec will remind you how many pending

examples you have, so you always know how close you are to being

done!

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=113

PENDING EXAMPLES 114

Another case for marking an example pending is when you’re in the

middle of driving out an object, you’ve got some examples passing and

you add a new failing example. You look at the code, see the change you

want to make and realize that the design really doesn’t support what

you want to do to make this example pass.

There are a couple of different paths people choose at this juncture.

One is to comment out the failing example so you can refactor in the

green, and then uncomment the example and continue on. This works

great until you’re interrupted in the middle of this near the end of the

day on Friday, and 3 months later you look back at that file and find

examples you commented out three months ago.

Instead of commenting the example out, you can mark it pending like

this:

describe "onion rings" do

it "should not be mixed with french fries" do

pending "cleaning out the fryer"

fryer_with(:onion_rings).should_not include(:french_fry)

end

end

In this case, even though the example block gets executed, it stops exe-

cution on the line with the pending() declaration. The subsequent code

is not run, there is no failure, and the example is listed as pending in

the output, so it stays on your radar. When you’ve finished refactoring

you can remove the pending declaration to execute the code example

as normal. This is, clearly, much better than commenting out failing

examples and having them get lost in the shuffle.

The third way to indicate a pending example can be quite helpful in

handling bug reports. Let’s say you get a bug report and the reporter is

kind enough to provide a failing example. Or you create a failing exam-

ple yourself to prove the bug exists. You don’t plan to fix it this minute,

but you want to keep the code handy. Rather than commenting the

code, you could use the pending() method to keep the failing example

from being executed.

You can also, however, wrap the example code in a block and pass that

to the pending method, like this:

describe "an empty array" do

it "should be empty" do

pending("bug report 18976") do

[].should be_empty

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=114

BEFORE AND AFTER 115

end

end

When RSpec encounters this block it actually executes the block. If the

block fails or raises an error, RSpec proceeds as with any other pending

example.

If, however, the code executes without incident, RSpec raises a PendingEx-

ampleFixedError, letting you know that you’ve got an example that is

pending for no reason:

an empty array

- should be empty (ERROR - 1)

1)

'an empty array should be empty' FIXED

Expected pending 'bug report 18976' to fail. No Error was raised.

pending_fixed.rb:6:

pending_fixed.rb:4:

Finished in 0.007687 seconds

1 example, 1 failure

The next step is to remove the pending wrapper, and re-run the exam-

ples with your formerly-pending, newly-passing example added to the

total of passing examples.

So now you know three ways to identify pending examples, each of

which can be helpful in your process in different ways:

• add pending examples as you think of new examples that you want

to write

• disable examples without losing track of them (rather than com-

menting them out)

• wrap failing examples when you want to be notified that changes

to the system cause them to pass

So now that you know how to postpone writing examples, let’s talk

about what happens when you actually write some!

10.3 Before and After

If we were developing a Stack, we’d want to describe how a Stack

behaves when it is empty, almost empty, almost full, and full. And we’d

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=115

BEFORE AND AFTER 116

want to describe how the push(), pop(), and peek() methods behave

under each of those conditions.

If we multiply the 4 states by the 3 methods, we’re going to be describing

12 different scenarios that we’ll want to group together by either state

or method. We’ll talk about grouping by method in the (as yet) unwritten

sec.organizingExamples. Right now, let’s talk about grouping things by

Initial State, using RSpec’s before() method.

before(:each)

To group examples by initial state, or context, RSpec provides a before()

method that can run either one time before :all the examples in an

example group or once before :each of the examples. In general, it’s

better to use before(:each) because that re-creates the context before

each example and keeps state from leaking from example to example.

Here’s how this might look for the Stack examples:

Download describeit/stack.rb

describe Stack, "when empty" do

before(:each) do

@stack = Stack.new

end

end

describe Stack, "when almost empty (with one element)" do

before(:each) do

@stack = Stack.new

@stack.push 1

end

end

describe Stack, "when almost full (with one element less than capacity)" do

before(:each) do

@stack = Stack.new

(1..9).each { |n| @stack.push n }

end

end

describe Stack, "when full" do

before(:each) do

@stack = Stack.new

(1..10).each { |n| @stack.push n }

end

end

As we add examples to each of these example groups, the code in the

block passed to before(:each) will be executed before each example is

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/describeit/stack.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=116

BEFORE AND AFTER 117

executed, putting the environment in the same known starting state

before each example in that group.

before(:all)

In addition to before(:each), we can also say before(:all). This gets run

once and only once in its own instance of Object, but its instance vari-

ables get copied to each instance in which the examples are run. A

word of caution in using this: in general, we want to have each example

run in complete isolation from one another. As soon as we start sharing

state across examples, unexpected things begin to happen.

Consider a stack. The pop() method removes the top item from a stack,

which means that the second example that uses the same stack instance

is starting off with a stack that has one less item than in the before(:all)

block. When that example fails, this fact is going to make it more chal-

lenging to understand the failure.

Even if it seems to you that sharing state won’t be a problem right now

in any given example, this is sure to change over time. Problems created

by sharing state across examples are notoriously difficult to find. If we

have to be debugging at all, the last thing we want to be debugging is

the examples.

So what is before(:all) actually good for? One example might be opening

a network connection of some sort. Generally, this is something we

wouldn’t be doing in the isolated examples that RSpec is really aimed

at. If we’re using RSpec to drive higher level examples, however, then

this might be a good case for using before(:all).

after(:each)

Following the execution of each example, before(:each)’s counterpart

after(:each) is executed. This is rarely necessary because each example

runs in its own scope and the instance variables consequently go out

of scope after each example.

There are cases, however, when after(:each) can be quite useful. If you’re

dealing with a system that maintains some global state that you want

to modify just for one example, a common idiom for this is to set aside

the global state in an instance variable in before(:each) and then restore

it in after(:each), like this:

before(:each) do

@original_global_value = $some_global_value

$some_global_value = temporary_value

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=117

HELPER METHODS 118

end

after(:each) do

$some_global_value = @original_global_value

end

after(:each) is guaranteed to run after each example, even if there are

failures or errors in any before blocks or examples, so this is a safe

approach to restoring global state.

after(:all)

We can also define some code to be executed after(:all) of the exam-

ples in an example group. This is even more rare than after(:each), but

there are cases in which it is justified. Examples include closing down

browsers, closing database connections, closing sockets, etc. Basically,

any resources that we want to ensure get shut down, but not after every

example.

So we’ve now explored before and after :each and before and after :all.

These methods are very useful in helping to organize our examples by

removing duplication—not just for the sake of removing duplication but

with the express purpose of improving clarity and thereby making the

examples easier to understand.

But sometimes we want to share things across a wider scope. The next

two sections will address that problem by introducing Helper Methods

and Shared Examples.

10.4 Helper Methods

Another approach to cleaning up our examples is to use Helper Methods

that we define right in the example group, which are then accessible

from all of the examples in that group. Imagine that we have several

examples in one example group, and at one point in each example we

need to perform some action that is somewhat verbose.

describe Thing do

it "should do something when ok" do

thing = Thing.new

thing.set_status('ok')

thing.do_fancy_stuff(1, true, :move => 'left', :obstacles => nil)

...

end

it "should do something else when not so good" do

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=118

HELPER METHODS 119

thing = Thing.new

thing.set_status('not so good')

thing.do_fancy_stuff(1, true, :move => 'left', :obstacles => nil)

...

end

end

Both examples need to create a new Thing and assign it a status. This

can be extracted out to a helper like this:

describe Thing do

def create_thing(options)

thing = Thing.new

thing.set_status(options[:status])

thing

end

it "should do something when ok" do

thing = create_thing(:status => 'ok')

thing.do_fancy_stuff(1, true, :move => 'left', :obstacles => nil)

...

end

it "should do something else when not so good" do

thing = create_thing(:status => 'not so good')

thing.do_fancy_stuff(1, true, :move => 'left', :obstacles => nil)

...

end

end

One idiom you can apply to clean this up even more is to yield self from

initializers in your objects. Assuming that Thing’s initialize() method does

this, and set_status() does as well, you can write the above like this:

describe Thing do

def given_thing_with(options)

yield Thing.new do |thing|

thing.set_status(options[:status])

end

end

it "should do something when ok" do

given_thing_with(:status => 'ok') do |thing|

thing.do_fancy_stuff(1, true, :move => 'left', :obstacles => nil)

...

end

end

it "should do something else when not so good" do

given_thing_with(:status => 'not so good') do |thing|

thing.do_fancy_stuff(1, true, :move => 'left', :obstacles => nil)

...

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=119

HELPER METHODS 120

end

end

end

Obviously, this is a matter of personal taste, but you can see that

this cleans things up nicely, reducing the noise level in each of the

examples. Of course, with almost all benefits come drawbacks. In this

case, the drawback is that we have to look elsewhere to understand the

meaning of given_thing_with. This sort of indirection can make under-

standing failures quite painful when overused.

A good guideline to follow is to keep things consistent within each code

base. If all of the code examples in your system look like the one above,

even your new team mates who might not be familiar with these idioms

will quickly learn and adapt. If there is only one example like this in

the entire codebase, then that might be a bit more confusing. So as you

strive to keep things clean, be sure to keep them consistent as well.

Sharing Helper Methods

If we have helper methods that we wish to share across example groups,

we can define them in one or more modules and then include the mod-

ules in the example groups we want to have access to them.

module UserExampleHelpers

def create_valid_user

User.new(:email => 'e@mail.com', :password => 'shhhhh')

end

def create_invalid_user

User.new(:password => 'shhhhh')

end

end

describe User do

include UserExampleHelpers

it "does something when it is valid" do

user = create_valid_user

do stuff

end

it "does something when it is not valid" do

user = create_invalid_user

do stuff

end

If we have a module of helper methods that we’d like available in all of

our example groups, we can include the module in the configuration

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=120

SHARED EXAMPLES 121

(see Section 15.1, Global Configuration, on page 177 for more informa-

tion):

Spec::Runner.configure do |config|

config.include(UserExampleHelpers)

end

So now that we can share helper methods across example groups, how

about sharing examples?

10.5 Shared Examples

When we have a situation in which more than one class should behave

in exactly the same way, we can use a shared example group to describe

it once, and then include that example group in other example groups.

We declare a shared example group with the shared_examples_for() method.

shared_examples_for "Any Pizza" do

it "should taste really good" do

@pizza.should taste_really_good

end

it "should be available by the slice" do

@pizza.should be_available_by_the_slice

end

end

Once a shared example group is declared, we can include it in other

example groups with the it_should_behave_like() method.

describe "New York style thin crust pizza" do

it_should_behave_like "Any Pizza"

before(:each) do

@pizza = Pizza.new(:region => 'New York', :style => 'thin crust')

end

it "should have a really great sauce" do

@pizza.should have_a_really_great_sauce

end

end

describe "Chicago style stuffed pizza" do

it_should_behave_like "Any Pizza"

before(:each) do

@pizza = Pizza.new(:region => 'Chicago', :style => 'stuffed')

end

it "should have a ton of cheese" do

@pizza.should have_a_ton_of_cheese

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=121

SHARED EXAMPLES 122

end

end

which produces:

New York style thin crust pizza

- should taste really good

- should be available by the slice

- should have a really great sauce

Chicago style stuffed pizza

- should taste really good

- should be available by the slice

- should have a ton of cheese

This report does not include “Any Pizza”, but the “Any Pizza” exam-

ples, “should taste really good” and “should be available by the slice”

do appear in both of the other example groups. Also, @pizza is refer-

enced in the shared examples before they get included in the others.

Here’s why that works. At runtime, the shared examples are stored in

a collection and then copied into each example group that uses them.

They aren’t actually executed until the example group that uses them

gets executed, but that happens after before(:each) happens.

This example also hints at a couple of other features that RSpec brings

us to help make the examples as expressive as possible: Custom Expec-

tation Matchers and Arbitrary Predicate Matchers. These will be explained

in detail in later chapters, so if you haven’t skipped ahead to read about

them yet, consider yourself teased.

Sharing Examples in a Module

In addition to share_examples_for() and it_should_behave_like(), you can

also use the share_as method, which assigns the group to a constant so

you can include it using Ruby’s include method, like this:

share_as :AnyPizza do

...

end

describe "New York style thin crust pizza" do

include AnyPizza

...

end

describe "Chicago style stuffed pizza" do

include AnyPizza

...

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=122

NESTED EXAMPLE GROUPS 123

This leads to the same result as share_examples_for() and it_should_behave_like(),

but allows you to use the familiar Ruby syntax instead.

Even with both of these approaches, shared examples are very lim-

ited in nature. Because the examples are run in the same scope in

which they are included, the only way to share state between them

and other examples in the including group is through instance vari-

ables. You can’t just pass state to the group via the it_should_behave_like

method.

Because of this constraint, shared examples are really only useful for a

limited set of circumstances. When you want something more robust,

we recommend that you create custom macros, which we’ll discuss at

length in Chapter 15, Extending RSpec, on page 177.

10.6 Nested Example Groups

Nesting example groups is a great way to organize your examples within

one spec. Here’s a simple example:

describe "outer" do

describe "inner" do

end

end

As we discussed earlier in this chapter, the outer group is a subclass

of ExampleGroup. In this example, the inner group is a subclass of the

outer group. This means that any helper methods and/or before and

after declarations, included modules, etc declared in the outer group

are available in the inner group.

If you declare before and after blocks in both the inner and outer

groups, they’ll be run as follows:

1. outer before

2. inner before

3. example

4. inner after

5. outer after

To demonstrate this, copy this into a ruby file:

describe "outer" do

before(:each) { puts "first" }

describe "inner" do

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=123

NESTED EXAMPLE GROUPS 124

before(:each) { puts "second" }

it { puts "third"}

after(:each) { puts "fourth" }

end

after(:each) { puts "fifth" }

end

If you run that with the spec command, you should see output like this:

first

second

third

fourth

fifth

Because they are all run in the context of the same object, you can

share state across the before blocks and examples. This allows you to

do a progressive setup. For example, let’s say you want to express a

given in the outer group, an event (or when) in the inner group, and the

expected outcome in the examples themselves. You could do something

like this:

describe Stack do

before(:each) do

@stack = Stack.new(:capacity => 10)

end

describe "when full" do

before(:each) do

(1..10).each {|n| @stack.push n}

end

describe "when it receives push" do

it "should raise an error" do

lambda { @stack.push 11 }.should raise_error(StackOverflowError)

end

end

end

describe "when almost full (one less than capacity)"

before(:each) do

(1..9).each {|n| @stack.push n}

end

describe "when it receives push" do

it "should be full" do

@stack.push 10

@stack.should be_full

end

end

end

end

Now, I can imagine some of you thinking “w00t! Now that is DRY!” while

others think “Oh my god, it’s so complicated!” I, personally, sit in the

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=124

NESTED EXAMPLE GROUPS 125

latter camp, and tend to avoid structures like this, as they can make

it very difficult to understand failures. But in the end you have to find

what works for you, and this structure is one option that is available to

you. Handle with care.

I do, however, use nested example groups all the time. I just tend to use

them to organize concepts rather than build up state. So I’d probably

write the example above like this:

describe Stack do

describe "when full" do

before(:each) do

@stack = Stack.new(:capacity => 10)

(1..10).each {|n| @stack.push n}

end

describe "when it receives push" do

it "should raise an error" do

lambda { @stack.push 11 }.should raise_error(StackOverflowError)

end

end

end

describe "when almost full (one less than capacity)"

before(:each) do

@stack = Stack.new(:capacity => 10)

(1..9).each {|n| @stack.push n}

end

describe "when it receives push" do

it "should be full" do

@stack.push 10

@stack.should be_full

end

end

end

end

In fact, there are many who argue that you should never use the before

blocks to build up context at all. Here’s the same example:

describe Stack do

describe "when full" do

describe "when it receives push" do

it "should raise an error" do

stack = Stack.new(:capacity => 10)

(1..10).each {|n| stack.push n}

lambda { stack.push 11 }.should raise_error(StackOverflowError)

end

end

end

describe "when almost full (one less than capacity)"

describe "when it receives push" do

it "should be full" do

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=125

NESTED EXAMPLE GROUPS 126

stack = Stack.new(:capacity => 10)

(1..9).each {|n| stack.push n}

stack.push 10

stack.should be_full

end

end

end

end

Now this is probably the most readable of all three examples. The

nested describe blocks provide documentation and conceptual cohe-

sion, and each example contains all of the code it needs. The great

thing about this approach is that if you have a failure in one of these

examples, you don’t have to look anywhere else to understand it. It’s all

right there.

On the flip side, this is the least DRY of all three examples. If we change

the Stack’s constructor, we’ll have to change it in two places here, and

many more in a complete example. So you need to balance these con-

cerns. Sadly, there’s no one true way. And if there were, we’d all be

looking for new careers, so let’s be glad for the absence of the silver

bullet.

What you’ve learned

In this chapter we covered quite a bit about the approach RSpec takes

to structuring and organizing executable code examples. You learned

that you can:

• Define an example group using the describe() method

• Define an example using the it() method

• Identify an example as pending by either omiting the block or

using the pending() method inside the block

• Share state across examples using the before() method

• Define helper methods within an example group that are available

to each example in that group

• Share examples across multiple groups

• Nest example groups for cohesive organization

But what about the stuff that goes inside the examples? We’ve used a

couple of expectations in this chapter but we haven’t really discussed

them. The next chapters will address these lower level details, as well

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=126

NESTED EXAMPLE GROUPS 127

as introduce some of the peripheral tooling that is available to help you

nurture your inner BDD child and evolve into a BDD ninja.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=127

Chapter 11

Expectations
A major goal of BDD is getting the words right. We’re trying to derive lan-

guage, practices, and processes that support communication between

all members of a team, regardless of each person’s understanding of

things technical. This is why we like to use non-technical words like

Given, When and Then.

We also like to talk about expectations instead of assertions. The dictio-

nary defines the verb “to assert” as “to state a fact or belief confidently

and forcefully.” This is something we do in a courtroom. We assert that

it was Miss Peacock in the kitchen with a rope because that’s what we

believe to be true.

In executable code examples, we are describing an expectation of what

should happen rather than what will happen, so we choose the word

should.1 Having chosen “should”, we have another problem to solve:

where do we put it? Consider the following assertion from test/unit.

assert_equal 5, result

In this example, assert_equal() accepts the expected value followed by

the actual value. Now read that aloud: “Assert equal five result.” A

little bit cryptic, no? So now do what we normally do when reading

code out loud and insert the missing words: “Assert that five equals the

result.” That’s a bit better, but now that we’re speaking in English, we

see another problem. We don’t really want to “assert that five equals

result.” We want to “assert that the result equals five!” The arguments

are backwards!

1. See the (as yet) unwritten chp.writingSoftwareThatMatters for more on the motivations

behind should.

Prepared exclusively for Simone Joswig

CHAPTER 11. EXPECTATIONS 129

RSpec addresses the resulting confusion by exploiting Ruby’s meta-

programming facilities to provide a syntax that speaks the way we do.

What we want to say is that “the result should equal five.” Here’s how

we say it in English:

the result should equal 5

And here’s how we say it in RSpec:

result.should equal(5)

Read that out loud. In fact, climb up on the roof and cry out to the

whole town!!! Satisfying, isn’t it?

This is an example of an RSpec expectation, a statement which expresses

that at a specific point in the execution of a code example, some thing

should be in some state. Here are some other expectations that come

with RSpec:

message.should match(/on Sunday/)

team.should have(11).players

lambda { do_something_risky }.should raise_error(

RuntimeError, "sometimes risks pay off ... but not this time"

)

Don’t worry about understanding them fully right now. In this chapter

you’ll learn about all of RSpec’s built-in expectations. You’ll also learn

about the simple framework that RSpec uses to express expectations,

which you can then use to extend RSpec with your own domain-specific

expectations. With little effort, you’ll be able to express things like:

judge.should disqualify(participant)

registration.should notify_applicant("person@domain.com", /Dear Person/)

Custom expectations like these can make your examples far more read-

able and feel more like descriptions of behaviour than tests. Of course,

don’t forget to balance readability with clarity of purpose. If an example

with notify_applicant() fails, you’ll want to understand the implications of

that failure without having to go study a custom matcher. Always con-

sider your team-mates when creating constructs like this, and strive

for consistency within any code base (including its code examples).

With the proper balance, you’ll find that this makes it much easier to

understand what the examples are describing when looking back at

them days, weeks, or even months later. Easier understanding saves

time, and saving time saves money. This can help to reduce the cost

of change later on in the life of an application. This is what Agile is all

about.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=129

SHOULD AND SHOULD_NOT 130

To better understand RSpec’s expectations, let’s get familiar with their

different parts. We’ll start off by taking a closer look at the should()

and should_not() methods, followed by a detailed discussion of various

types of expression matchers. As you’ll see, RSpec supports expression

matchers for common operations that you might expect, like equality,

and some more unusual expressions as well.

11.1 should and should_not

RSpec achieves a high level of expressiveness and readability by exploit-

ing open classes in Ruby to add the methods should() and should_not()

to the Object class, and consequently every object in the system. Both

methods accept either an expression matcher or a Ruby expression

using a specific subset of Ruby operators. An Expression Matcher is an

object that does exactly what its name suggests: it matches an expres-

sion.

Let’s take a look at an example using the Equal Expression Matcher,

which you can access through the method equal(expected). This is one

of the many expression matchers that ships with RSpec.

result.should equal(5)

Seems simple enough, doesn’t it? Well let’s take a closer look. First, let’s

add parentheses as a visual aid:

result.should(equal(5))

Now take a look at Figure 11.1, on the next page.

When the Ruby interpreter encounters this line, it begins by evaluating

equal(5), which returns a new instance of the Equal class, initialized

with the value 5. This object is the expression matcher we use for this

Expectation. This instance of Equal is then passed to result.should.

Next, should() calls matcher.matches?(self). Here matcher is the instance

of Equal we just passed to should() and self is the result object. Because

should() is added to every object, it can be ANY object. Similarly, the

matcher can be ANY object that responds to matches?(target). This is a

beautiful example of how dynamic languages make it so much easier to

write truly Object Oriented code.

If matches?(self) returns true, then the Expectation is considered met,

and execution moves on to the next line in the example. If it returns

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=130

BUILT -IN MATCHERS 131

:Example :Object:Equal

equal(5)

<<create>>

should(matcher)

matches?(self)

matcher result

Figure 11.1: Should/Matcher Interaction Diagram

false, then an ExpectationNotMetException is raised with a message

returned by matcher.failure_message().

should_not() works the opposite way. If matches?(self) returns false, then

the Expectation is considered met and execution moves on to the next

line in the example. If it returns true, then an ExpectationNotMetExcep-

tion is raised with a message returned by matcher.negative_failure_message.

Note that should() uses failure_message, while should_not() uses nega-

tive_failure_message, allowing the Matcher to provide meaningful mes-

sages in either situation. Clear, meaningful feedback is one of RSpec’s

primary goals.

The should() and should_not() methods can also take any of several oper-

ators such as == and =~. You can read more about those in Section 11.5,

Operator Expressions, on page 145. Right now, let’s take a closer look

at RSpec’s built-in matchers.

11.2 Built-In Matchers

RSpec ships with several built-in matchers with obvious names that

you can use in your examples. In addition to equal(expected), others

include:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=131

BUILT -IN MATCHERS 132

Matchers

The idea of a Matcher is not unique to RSpec. In fact, when I first
pointed out to Dan North that we were using these, I referred
to them as Expectations. Given Dan’s penchant for “Getting
The words Right”, he corrected me, gently, saying that “while
should eat_cheese is an Expectation, the eat_cheese part is a
Matcher”, citing jMock2 (http://jmock.org) and Hamcrest (http://

code.google.com/p/hamcrest/) as examples.

jMock and Hamcrest are “A Lightweight Mock Object Library”
and a “library of matchers for building test expressions,” respec-
tively, and it turns out that jMock2 actually uses Hamcrest’s
matchers as Mock Argument Constraints. Seeing that inspired
me to have RSpec share matchers across Spec::Expectations

and Spec::Mocks as well. Since they are serving as both Mock
Argument Constraint Matchers and Expectation Matchers,
we’ll refer to them henceforth as expression matchers.

include(item)

respond_to(message)

raise_error(type)

By themselves, they seem a bit odd, but in context they make a bit more

sense:

prime_numbers.should_not include(8)

list.should respond_to(:length)

lambda { Object.new.explode! }.should raise_error(NameError)

We’ll cover each of RSpec’s built-in matchers, starting with those related

to equality.

Equality: Object Equivalence and Object Identity

Although we’re focused on behaviour, many of the expectations we want

to set are about the state of the environment after some event occurs.

The two most common ways of dealing with post-event state are to

specify that an object should have values that match our expectations

(object equivalence) and to specify that an object is the very same object

we are expecting (object identity).

Most xUnit frameworks support something like assert_equal to mean

that two objects are equivalent and assert_same to mean that two objects

are really the same object (object identity). This comes from languages

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://jmock.org
http://code.google.com/p/hamcrest/
http://code.google.com/p/hamcrest/
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=132

BUILT -IN MATCHERS 133

like Java, in which there are really only two constructs that deal with

equality: the == operator, which, in Java, means the two references

point to the same object in memory, and the equals method, which

defaults to the same meaning as ==, but is normally overridden to mean

equivalence.

Note that you have to do a mental mapping with assertEqual and assert-

Same. In Java, assertEqual means equal, assertSame means ==. This is OK

in languages with only two equality constructs, but Ruby is bit more

complex than that. Ruby has four constructs that deal with equality.

a == b

a === b

a.eql?(b)

a.equal?(b)

Each of these has different semantics, sometimes differing further in

different contexts, and can be quite confusing.2 So rather than forc-

ing you to make a mental mapping from expectations to the methods

they represent, RSpec lets you express the exact method you mean to

express.

a.should == b

a.should === b

a.should eql(b)

a.should equal(b)

The most common of these is should ==, as the majority of the time

we’re concerned with value equality, not object identity. Here are some

examples:

(3 * 5).should == 15

person = Person.new(:given_name => "Yukihiro", :family_name => "Matsumoto")

person.full_name.should == "Yukihiro Matsumoto"

person.nickname.should == "Matz"

In these examples, we’re only interested in the correct values. Some-

times, however, we’ll want to specify that an object is the exact object

that we’re expecting.

person = Person.create!(:name => "David")

Person.find_by_name("David").should equal(person)

Note that this puts a tighter constraint on the value returned by find_by_name(),

that it must be the exact same object as the one returned by create!().

2. See http://www.ruby-doc.org/core/classes/Object.html#M001057 for the official documenta-

tion about equality in Ruby.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://www.ruby-doc.org/core/classes/Object.html#M001057
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=133

BUILT -IN MATCHERS 134

While this may be appropriate when expecting some sort of caching

behaviour, the tighter the constraint, the more brittle the expectation.

If caching is not a real requirement in this example, then saying Per-

son.find_by_name("David").should == person is good enough and means that

this example is less likely to fail later when things get refactored.

Floating Point Calculations

Floating point math can be a pain in the neck when it comes to setting

expectations about the results of a calculation. And there’s little more

frustrating than seeing “expected 5.25, got 5.251” in a failure message,

especially when you’re only looking for two decimal places of precision.

To solve this problem, RSpec offers a be_close matcher that accepts an

expected value and an acceptable delta. So if you’re looking for preci-

sion of two decimal places, you can say:

result.should be_close(5.25, 0.005)

This will pass as long as the given value is within .005 of 5.25.

Multiline Text

Imagine developing an object that generates a statement. You could

have one big example that compares the entire generated statement to

an expected statement. Something like this:

expected = File.open('expected_statement.txt','r') do |f|

f.read

end

account.statement.should == expected

This approach of reading in a file that contains text that has been

reviewed and approved, and then comparing generated results to that

text, is known as the “Golden Master” technique and is described in

detail in J.B. Rainsberger’s JUnit Recipes [Rai04].

This serves very well as a high level code example, but when we want

more granular examples, this can sometimes feel a bit like brute force,

and it can make it harder to isolate a problem when the wheels fall off.

Also, there are times that we don’t really care about the entire string,

just a subset of it. Sometimes we only care that it is formatted a specfic

way, but don’t care about the details. Sometimes we care about a few

details but not the format.

In any of these cases we can expect a matching regular expression

using either of the following patterns:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=134

BUILT -IN MATCHERS 135

result.should match(/this expression/)

result.should =~ /this expression/

In the statement example, we might do something like this:

statement.should =~ /Total Due: \$37\.42/m

One benefit of this approach is that each example is, by itself, less

brittle, less prone to fail due to unrelated changes. RSpec’s own code

examples are filled with expectations like this related to error messages,

where we want to specify certain things are in place but don’t want the

expectations to fail due to some inconsequential changes to formatting.

Arrays and Hashes

As is the case with text, sometimes we want to set expectations about

an entire Array or Hash, and sometimes just a subset. Because RSpec

delegates == to Ruby, we can use that any time we want to expect an

entire Array or Hash, with semantics we should all be familiar with.

[1,2,3].should == [1,2,3]

[1,2,3].should_not == [1,2,3,4]

{'this' => 'hash'}.should == {'this' => 'hash'}

{'this' => 'hash'}.should_not == {'that' => 'hash'}

But sometimes we just want to expect that 2 is in the Array [1,2,3].

To support that, RSpec includes an include() method that invokes a

matcher that will do just that:

[1,2,3].should include(2)

{'a' => 1, 'b' => 2}.should include('b' => 2)

{'a' => 1}.should_not include('a' => 2)

Sometimes we don’t need that much detail, and we just want to expect

an Array of a specific length, or a Hash with 17 key/value pairs. You

could express that using the equality matchers, like this:

array.length.should == 37

hash.keys.length.should == 42

That’s perfectly clear and is perfectly acceptable, but lacks the DSL feel

that we get from so many of RSpec’s matchers. For those of you who

prefer that, we can use the have matcher, which you’ll learn about in

more detail later in this chapter in Section 11.4, Have Whatever You

Like, on page 141. For an Array of players on a baseball field, you can

do this:

team.should have(9).players_on_the_field

For a hash with 17 key/value pairs:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=135

BUILT -IN MATCHERS 136

hash.should have(17).key_value_pairs

In these examples, the players_on_the_field() and key_value_pairs() meth-

ods are actually there as pure syntactic sugar, and are not even eval-

uated. Admittedly, some people get confused and even angered by this

magic, and they have a valid argument when suggesting that this vio-

lates the principle of least surprise. So use this approach if you like the

way it reads and use the more explicit and less magical, but equally

effective array.length.should == 37 if that works better for you and your

development team.

Ch, ch, ch, ch, changes

Ruby on Rails extends test/unit with some rails-specific assertions.

One such assertion is assert_difference(), which is most commonly used

to express that some event adds a record to a database table, like this:

assert_difference 'User.admins.count', 1 do

User.create!(:role => "admin")

end

This asserts that the value of User.admins.count will increase by 1 when

you execute the block. In an effort to maintain parity with the rails

assertions, RSpec offers this alternative:

lambda {

User.create!(:role => "admin")

}.should change{ User.admins.count }

You can also make that much more explicit if you want by chaining

calls to by(), to() and from().

lambda {

User.create!(:role => "admin")

}.should change{ User.admins.count }.by(1)

lambda {

User.create!(:role => "admin")

}.should change{ User.admins.count }.to(1)

lambda {

User.create!(:role => "admin")

}.should change{ User.admins.count }.from(0).to(1)

This does not only work with Rails. You can use it for any situation in

which you want to express a side effect of some event:

lambda {

seller.accept Offer.new(250_000)

}.should change{agent.commission}.by(7_500)

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=136

BUILT -IN MATCHERS 137

Now you could, of course, express the same thing like this:

agent.commission.should == 0

seller.accept Offer.new(250_000)

agent.commission.should == 7_500

This is pretty straightforward and might even be easier to understand at

first glance. Using should change, however, does a nice job of identifying

what is the event and what is the expected outcome. It also functions

as a wrapper for more than one expectation if you use the from() and

to() methods, as in the examples above.

So which approach should you choose? It really comes down to a matter

of personal taste and style. If you’re working solo, it’s up to you. If you’re

working on a team, have a group discussion about the relative merits

of each approach.

Expecting Errors

When I first started learning Ruby I was very impressed with how well

the language read my mind! I learned about Arrays before I learned

about Hashes, so I already knew about Ruby’s iterators when I encoun-

tered a problem that involved a Hash, and I wanted to iterate through

its key/value pairs. Before using ri or typing puts hash.methods, I typed

hash.each_pair |k,v| just to see if it would work. Of course, it did. And I

was happy.

Ruby is filled with examples of great, intuitive APIs like this, and it

seems that developers who write their own code in Ruby strive for the

same level of obvious, inspired by the beauty of the language. We all

want to provide that same feeling of happiness to developers that they

get just from using the Ruby language directly.

Well, if we care about making developers happy, we should also care

about providing meaningful feedback when the wheels fall off. We want

to provide error classes and messages that provide context that will

make it easier to understand what went wrong.

Here’s a great example from the Ruby library itself:

$ irb

irb(main):001:0> 1/0

ZeroDivisionError: divided by 0

from (irb):1:in `/'

from (irb):1

The fact that the error is named ZeroDivisionError probably tells you every-

thing you need to know to understand what went wrong. The message

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=137

BUILT -IN MATCHERS 138

“divided by 0” reinforces that. RSpec supports the development of infor-

mative error classes and messages with the raise_error() matcher.

If a checking account has no overdraft support, then it should let us

know:

account = Account.new 50, :dollars

lambda {

account.withdraw 75, :dollars

}.should raise_error(

InsufficientFundsError,

/attempted to withdraw 75 dollars from an account with 50 dollars/

)

The raise_error() matcher will accept 0, 1 or 2 arguments. If you want to

keep things generic, you can pass 0 arguments and the example will

pass as long as any subclass of Exception is raised.

lambda { do_something_risky }.should raise_error

The first argument can be any of a String message, a Regexp that should

match an actual message, or the class of the expected error.

lambda {

account.withdraw 75, :dollars

}.should raise_error(

"attempted to withdraw 75 dollars from an account with 50 dollars"

)

lambda {

account.withdraw 75, :dollars

}.should raise_error(/attempted to withdraw 75 dollars/)

lambda {

account.withdraw 75, :dollars

}.should raise_error(InsufficientFundsError)

When the first argument is an error class, it can be followed by a second

argument that is either a String message or a Regexp that should match

an actual message.

lambda {

account.withdraw 75, :dollars

}.should raise_error(

InsufficientFundsError,

"attempted to withdraw 75 dollars from an account with 50 dollars"

)

lambda {

account.withdraw 75, :dollars

}.should raise_error(

InsufficientFundsError,

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=138

BUILT -IN MATCHERS 139

/attempted to withdraw 75 dollars/

)

Which of these formats you choose depends on how specific you want to

get about the type and the message. Sometimes you’ll find it pragmatic

to have just a few code examples that get into details about messages,

while others may just specify the type. If you look through RSpec’s own

code examples, you’ll see many that look like this:

lambda {

@mock.rspec_verify

}.should raise_error(MockExpectationError)

Since there are plenty of other examples that specify details about the

error messages raised by message expectation failures, this example

only cares that a MockExpectationError is raised.

Expecting a Throw

A less often used, but very valuable construct in Ruby is the throw/catch

block. Like raise() and rescue(), throw() and catch() allow you to stop exe-

cution within a given scope based on some condition. The main differ-

ence is that throw/catch expresses expected circumstances as opposed

to exceptional circumstances. It is most commonly used (within its rar-

ity) to break out of nested loops.

For example, let’s say we want to know if anybody on our team has

worked over 50 hours in one week in the last month. We’re going to

have a nested loop:

re_read_the_bit_about :sustainable_pace if working_too_hard?

def working_too_hard?

weeks.each do |week|

people.each do |person|

return true if person.hours_for(week) > 50

end

end

end

This seems perfectly sound, but what if we want to optimize it so it

short circuits as soon as working_too_hard == true? This is a perfect case

for using throw/catch:

def working_too_hard?

catch :working_too_hard do

weeks.each do |week|

people.each do |person|

throw :working_too_hard, true if person.hours_for(week) > 50

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=139

PREDICATE MATCHERS 140

end

end

end

end

To set an expectation that a symbol is thrown, we wrap up the code in

a proc and set the expectation on the proc:

lambda {

team.working_too_hard

}.should throw_symbol(:working_too_hard)

Like the raise_error() matcher, the throw_symbol() matcher will accept 0,

1 or 2 arguments. If you want to keep things generic, you can pass 0

arguments and the example will pass as long as anything is thrown.

The first (optional) argument to throw_symbol() must be a Symbol, as

shown in the example above.

The second argument, also optional, can be anything, and the matcher

will pass only if both the symbol and the thrown object are caught. In

our current example, that might look like this:

lambda {

team.working_too_hard

}.should throw_symbol(:working_too_hard, true)

or ...

lambda {

team.working_too_hard

}.should throw_symbol(:working_too_hard, false)

11.3 Predicate Matchers

A Ruby predicate method is one whose name ends with a “?” and

returns a boolean response. One example built right into the language

is array.empty?. This is a simple, elegant construct that allows us to

write code like this:

do_something_with(array) unless array.empty?

When we want to set an expectation that a predicate should return a

specific result, however, the code isn’t quite as pretty.

array.empty?.should == true

While that does express what we’re trying to express, it doesn’t read

that well. What we really want to say is that the “array should be

empty”, right? Well, say it then!

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=140

HAVE WHATEVER YOU LIKE 141

array.should be_empty

Believe it or not, that will work as you expect. The expectation will

be met and the example will pass if the array has an empty? method

that returns true. If array does not respond to empty?, then we get a

NoMethodError. If it does respond to empty? but returns false, then we

get an ExpectationNotMetError.

This feature will work for any Ruby predicate. It will even work for

predicates that accept arguments, such as:

user.should be_in_role("admin")

This will pass as long as user.in_role?("admin") returns true.

How They Work

RSpec overrides method_missing to provide this nice little bit of syntac-

tic sugar. If the missing method begins with “be_”, RSpec strips off

the “be_”, appends a “?”, and sends the resulting message to the given

object.

Taking this a step further, there are some predicates that don’t read as

fluidly as we might like when prefixed with “be_”. instance_of?(type), for

example, becomes be_instance_of. To make these a bit more readable,

RSpec also looks for things prefixed with “be_a_” and “be_an_”. So we

also get to write be_a_kind_of(Player) or be_an_instance_of(Pitcher).

Even with all of this support for prefixing arbitrary predicates, there

will still be cases in which the predicate just doesn’t fit quite right.

For example, you wouldn’t want to say parser.should be_can_parse("some

text"), would you? Well, we wouldn’t want to have to say anything quite

so ridiculous, so RSpec supports writing custom matchers with a sim-

ple DSL that you’ll read about in Section 15.3, Custom Matchers, on

page 182.

Up until now we’ve been discussing expectations about the state of an

object. The object should be_in_some_state. But what about when the

state we’re interested in is not in the object itself, but in an object that

it owns?

11.4 Have Whatever You Like

A hockey team should have 5 skaters on the ice under normal condi-

tions. The word “character” should have 9 characters in it. Perhaps a

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=141

HAVE WHATEVER YOU LIKE 142

Hash should have a specific key. We could say Hash.has_key?(:foo).should

be_true, but what we really want to say is Hash.should have_key(:foo).

RSpec combines expression matchers with a bit more method_missing

goodness to solve these problems for us. Let’s first look at RSpec’s use of

method_missing. Imagine that we’ve got a simple RequestParameters class

that converts request parameters to a hash. We might have an example

like this:

request_parameters.has_key?(:id).should == true

This expression makes sense, but it just doesn’t read all that well. To

solve this, RSpec uses method_missing to convert anything that begins

with have_ to a predicate on the target object beginning with has_. In

this case, we can say:

request_parameters.should have_key(:id)

In addition to the resulting code being more expressive, the feedback

that we get when there is a failure is more expressive as well. The feed-

back from the first example would look like this:

expected true, got false

Whereas the have_key example reports this:

expected #has_key?(:id) to return true, got false

This will work for absolutely any predicate method that begins with

“has_”. But what about collections? We’ll take a look at them next.

Owned Collections

Let’s say we’re writing a fantasy baseball application. When our app

sends a message to the home team to take the field, we want to specify

that it sends 9 players out to the field. How can we specify that? Here’s

one option:

field.players.collect {|p| p.team == home_team }.length.should == 9

If you’re an experienced rubyist, this might make sense right away, but

compare that to this expression:

home_team.should have(9).players_on(field)

Here, the object returned by have() is a matcher, which does not respond

to players_on(). When it receives a message it doesn’t understand (like

players_on()), it delegates it to the target object, in this case the home_team.

This expression reads like a requirement and, like arbitrary predicates,

encourages useful methods like players_on().

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=142

HAVE WHATEVER YOU LIKE 143

At any step, if the target object or its collection doesn’t respond to the

expected messages, a meaningful error gets raised. If there is no play-

ers_on method on home_team, you’ll get a NoMethodError. If the result of

that method doesn’t respond to length or size, you’ll get an error saying

so. If the collection’s size does not match the expected size, you’ll get a

failed expectation rather than an error.

Un-owned Collections

In addition to setting expectations about owned collections, there are

going to be times when the object you’re describing is itself a collection.

RSpec lets us use have to express this as well:

collection.should have(37).items

In this case, items is pure syntactic sugar. What’s happening to support

this is safe, but a bit sneaky, so it is helpful for you to understand what

is happening under the hood, lest you be surprised by any unexpected

behaviour. We’ll discuss the inner workings of have a bit later in this

section.

Strings

Strings are collections too! Not quite like Arrays and Hashes, but they

do respond to a lot of the same messages as collections do. Because

Strings respond to length and size, you can also use have to expect a

string of a specific length.

"this string".should have(11).characters

As in unowned collections, characters is pure syntactic sugar in this

example.

Precision in Collection Expectations

In addition to being able to express an expectation that a collection

should have some number of members, you can also say that it should

have exactly that number, at least that number or at most that number:

day.should have_exactly(24).hours

dozen_bagels.should have_at_least(12).bagels

internet.should have_at_most(2037).killer_social_networking_apps

have_exactly is just an alias for have. The others should be self explana-

tory. These three will work for all of the applications of have described

in the previous sections.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=143

HAVE WHATEVER YOU LIKE 144

:Example :Object:Have

have(3)

<<create>>

matcher result

new(3)

things() things()

Figure 11.2: Have Matcher Sequence

How It Works

The have method can handle a few different scenarios. The object returned

by have is an instance of Spec::Matchers::Have, which gets initialized with

the expected number of elements in a collection. So the expression:

result.should have(3).things

is the equivalent of the expression:

result.should(Have.new(3).things)

Figure 11.2 shows how this all ties together. The first thing to get eval-

uated is Have.new(3), which creates a new instance of Have, initializing

it with a value of 3. At this point, the Have object stores that number as

the expected value.

Next, the Ruby interpreter sends things to the Have object. method_missing

is then invoked because Have doesn’t respond to things. Have overrides

method_missing to store the message name (in this case things) for later

use and then returns self. So the result of have(3).things is an instance

of Have that knows the name of the collection you are looking for and

how many elements should be in that collection.

The Ruby interpreter passes the result of have(3).things to should(), which,

in turn, sends matches?(self) to the matcher. It’s the matches? method

in which all the magic happens.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=144

OPERATOR EXPRESSIONS 145

First, it asks the target object (result) if it responds to the message that

it stored when method_missing was invoked (things). If so, it sends that

message and, assuming that the result is a collection, interrogates the

result for its length or its size (whichever it responds to, checking for

length first). If the object does not respond to either length or size, then

you get an informative error message. Otherwise the actual length or

size is compared to the expected size and the example passes or fails

based the outcome of that comparison.

If the target object does not respond to the message stored in method_missing,

then Have tries something else. It asks the target object if it, itself, can

respond to length or size. If it will, it assumes that you are actually inter-

ested in the size of the target object, and not a collection that it owns.

In this case, the message stored in method_missing is ignored and the

size of the target object is compared to the expected size and, again, the

example passes or fails based the outcome of that comparison.

Note that the target object can be anything that responds to length or

size, not just a collection. As explained in our discussion of Strings, this

allows you to express expectations like “this string”.should have(11).characters.

In the event that the target object does not respond to the message

stored in method_missing, length or size, then Have will go ahead and

send the message to the target object and let the resulting NoMethodError

bubble up to the example.

As you can see, there is a lot of magic involved. RSpec tries to cover

all the things that can go wrong and give you useful messages in each

case, but there are still some potential pitfalls. If you’re using a custom

collection in which length and size have different meanings, you might

get unexpected results. But these cases are rare, and as long as you are

aware of the way this all works, you should certainly take advantage of

its expressiveness.

11.5 Operator Expressions

Generally, we want to be very precise about our expectations. We would

want to say that “2 + 2 should equal 4,” not that “2 + 2 should be

greater than 3.” There are exceptions to this, however. Writing a random

generator for numbers between 1 and 10, we would want to make sure

that 1 appears roughly 1000 in 10,000 tries. So we set some level of

tolerance, say 2%, which results in something like “count for 1’s should

be greater than or equal to 980 and less than or equal to 1020.”

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=145

GENERATED DESCRIPTIONS 146

An example like that might look like this:

it "should generate a 1 10% of the time (plus/minus 2%)" do

result.occurences_of(1).should be_greater_than_or_equal_to(980)

result.occurences_of(1).should be_less_than_or_equal_to(1020)

end

Certainly it reads like English, but it’s just a bit verbose. Wouldn’t it be

nice if, instead, we could use commonly understood operators like >=

instead of be_greater_than_or_equal_to? As it turns out, we can!

Thanks to some magic that we get for free from the Ruby language,

RSpec is able to support the following expectations using standard

Ruby operators:

result.should == 3

result.should =~ /some regexp/

result.should be < 7

result.should be <= 7

result.should be >= 7

result.should be > 7

RSpec can do this because Ruby interprets these expressions like this:

result.should.==(3)

result.should.=~(/some regexp/)

result.should(be.<(7))

result.should(be.<=(7))

result.should(be.>=(7))

result.should(be.>(7))

RSpec exploits that interpretation by defining == and =~ on the object

returned by should() and <, <=, >, and >= on the object returned by be.

11.6 Generated Descriptions

Sometimes we end up with a an example docstring which is nearly

an exact duplication of the expectation expressed in the example. For

example:

describe "A new chess board" do

before(:each) do

@board = Chess::Board.new

end

it "should have 32 pieces" do

@board.should have(32).pieces

end

end

Produces:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=146

GENERATED DESCRIPTIONS 147

A new chess board

- should have 32 pieces

In this case, we can rely on RSpec’s automatic example-name genera-

tion to produce the name you’re looking for:

describe "A new chess board" do

before(:each) { @board = Chess::Board.new }

specify { @board.should have(32).pieces }

end

Produces:

A new chess board

- should have 32 pieces

This example uses the specify() method instead of it() because specify

is more readable when there is no docstring. Both it() and specify() are

actually aliases of the example() method, which creates an example.

Each of RSpec’s matchers generates a description of itself, which gets

passed on to the example. If the example (or it, or specify) method does

not receive a docstring, it uses the last of these descriptions that it

receives. In this example, there is only one: “should have 32 pieces.”

It turns out that it is somewhat rare that the auto-generated names

express exactly what you would want to express in the descriptive string

passed to example. Our advice is to always start by writing exactly what

you want to say and only resort to using the generated descriptions

when you actually see that the string and the expectation line up pre-

cisely. Here’s an example in which it might be more clear to leave the

string in place:

it "should be eligible to vote at the age of 18" do

@voter.birthdate = 18.years.ago

@voter.should be_eligible_to_vote

end

Even though the auto-generated description would read “should be eli-

gible to vote,” the fact that he is 18 today is very important to the

requirement being expressed. Whereas, consider this example:

describe RSpecUser do

before(:each) do

@rspec_user = RSpecUser.new

end

it "should be happy" do

@rspec_user.should be_happy

end

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=147

SUBJECT -IVITY 148

This Expectation would produce a string identical to the one that is

being passed to it, so this is a good candidate for taking advantage of

auto-generated descriptions.

11.7 Subject-ivity

The subject of an example is the object being described. In the happy

RSpecUser example, the subject is an instance of RSpecUser, instantiated

in the before block.

RSpec offers an alternative to setting up instance variables in before

blocks like this, in the form of the subject() method. You can use this

method in a few different ways, ranging from explicit, and consequently

verbose, to implicit access which can make things more concise. First

let’s discuss explicit interaction with the subject.

Explicit Subject

In an example group, you can use the subject() method to define an

explicit subject by passing it a block, like this:

describe Person do

subject { Person.new(:birthdate => 19.years.ago) }

end

Then you can interact with that subject like this:

describe Person do

subject { Person.new(:birthdate => 19.years.ago) }

specify { subject.should be_eligible_to_vote }

end

Delegation to Subject

Once a subject is declared, the example will delegate should() and should_not()

to that subject, allowing you to clean that up even more:

describe Person do

subject { Person.new(:birthdate => 19.years.ago) }

it { should be_eligible_to_vote }

end

Here the should() method has no explicit receiver, so it is received by the

example itself. The example then calls subject() and delegates should()

to it. Note that we used it() in this case, rather than specify(). Read that

aloud and compare it to the previous example and you’ll see why.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=148

SUBJECT -IVITY 149

The previous example reads “specify subject should be eligible to vote,”

whereas this example reads “it should be eligible to vote.” Getting more

concise, yes? It turns out that, in some cases, we can make things even

more concise using an implicit subject.

Implicit Subject

In the happy RSpecUser example, we created the subject by calling new

on the RSpecUser class without any arguments. In cases like this, we

can leave out the explicit subject declaration and RSpec will create an

implicit subject for us:

describe RSpecUser do

it { should be_happy }

end

Now that is concise! Can’t get much more concise that this. Here, the

subject() method used internally by the example returns a new instance

of RSpecUser.

Of course this only works when all the pieces fit. The describe() method

has to receive a class that can be instantiated safely without any argu-

ments to new(), and the resulting instance has to be in the correct

state.

One word of caution: seeing things so concise like this breeds a desire to

make everything else concise. Be careful to not let the goal of keeping

things concise get in the way of expressing what you really want to

express. Delegating to an implicit subject takes a lot for granted, and it

should only be used when all the pieces really fit, rather than coercing

the pieces to fit.

Beyond Expectations

In this chapter, we’ve covered:

• should() and should_not()

• RSpec’s built-in matchers

• Predicate matchers

• Operator expressions

• Generated descriptions

• Declaring an explicit subject()

• Using the implicit subject()

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=149

SUBJECT -IVITY 150

For most projects, you’ll probably find that you can express what you

want to using just the tools that come along with RSpec. But what

about those cases where you think to yourself “if only RSpec had this

one additional matcher”? We’ll address that question in Chapter 15,

Extending RSpec, on page 177, along with a number of other techniques

for extending RSpec and tuning its DSL towards your specific projects.

In the meantime, there’s still quite a bit more material to cover with-

out extending things at all. In the next chapter we’ll introduce you to

RSpec’s built-in mock objects framework, a significant key to thinking

in terms of behaviour.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=150

Chapter 12

Mocking in RSpec
Coming soon ...

Prepared exclusively for Simone Joswig

Chapter 13

RSpec and Test::Unit
Are you working on a Ruby project that already uses Test::Unit? Are

you considering migrating over to RSpec?

Migrating from Test::Unit to RSpec is a straightforward, but manual

process. It involves a series of refactorings to your tests and, as with

all refactorings, you should rerun them between each refactoring. That

way if any changes you make cause things to go awry, you’ll always

know what caused the problem because it’s the last change you made

before you ran the tests.

While you’re in the middle of this refactoring, your tests will look like

half tests and half RSpec code examples because you’ll be mixing the

two styles. This is not pretty, but it’s extremely important as it allows

you to rerun everything after each refactoring. As you’ll see, RSpec and

Test::Unit are completely interoperable, but the reason for this is to

make migration easier. We recommend you don’t use this interoper-

ability to leave your tests (or specs) in the hybrid state, as it will just

lead to confusion later on.

The migration work essentially consists of refactoring the following Test::Unit

elements to RSpec:

• class SomeClassTest < Test::Unit::TestCase becomes describe SomeClass

• def test_something becomes it "should do something descriptive"

• def setup becomes before(:each)

• def teardown becomes after(:each)

• assert_equal 4, array.length becomes array.length.should == 4

Prepared exclusively for Simone Joswig

RUNNING TEST::UNIT TESTS WITH THE RSPEC RUNNER 153

Before we jump in and start with these refactorings, let’s get you set up

so that you can run the tests between each refactoring using RSpec’s

runner.

13.1 Running Test::Unit tests with the RSpec runner

There are several ways to run tests written with Test::Unit. You can

use rake to run one or more test files, run them directly with the ruby

interpreter, or you can use the testrb script that comes with your Ruby

distribution. We’ll use the TestTask that ships with Rake for our example.

Let’s start with a very minimal project that has one library file, one test

file, a test_helper.rb, and a Rakefile with a TestTask defined.

Download testunit/lib/person.rb

class Person

def self.unregister(person)

end

def initialize(first_name, last_name)

@first_name, @last_name = first_name, last_name

end

def full_name

"#{@first_name} #{@last_name}"

end

def initials

"#{@first_name[0..0]}#{@last_name[0..1]}"

end

end

Download testunit/test/test_helper.rb

$:.unshift File.join(File.dirname(__FILE__), *%w[.. lib])

require 'person'

Download testunit/test/person_test.rb

require File.join(File.dirname(__FILE__), "/test_helper.rb")

require 'test/unit'

class PersonTest < Test::Unit::TestCase

def setup

@person = Person.new('Dave','Astels')

end

def test_full_name

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/testunit/lib/person.rb
http://media.pragprog.com/titles/achbd/code/testunit/test/test_helper.rb
http://media.pragprog.com/titles/achbd/code/testunit/test/person_test.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=153

RUNNING TEST::UNIT TESTS WITH THE RSPEC RUNNER 154

assert_equal 'Dave Astels', @person.full_name

end

def test_initials

assert_equal 'DA', @person.initials

end

def teardown

Person.unregister(@person)

end

end

Download testunit/Rakefile

require 'rake/testtask'

Rake::TestTask.new do |t|

t.test_files = FileList['test/person_test.rb']

end

This PersonTest has a setup and teardown, one passing test and one

failing test. We’re including a failing test to give you a better picture of

the enhanced output you get from RSpec. Go ahead and run rake test,

and you should see the following output:

Started

.F

Finished in 0.00903 seconds.

1) Failure:

test_initials(PersonTest) [./test/person_test.rb:15]:

<"DA"> expected but was

<"DAs">.

2 tests, 2 assertions, 1 failures, 0 errors

If you’ve been using Test::Unit this should be quite familiar to you. After

the word “Started” we get a text-based progress bar with a “.” for each

passing test and an “F” for each failure.

The progress bar is followed by the details of each failure, including a

reference to the line in the test file that contains the failed assertion,

and an explanation of the failure.

Lastly we have a summary listing how many test methods were run,

how many assertions were evaluated, the number of logical failures

(failed assertions) and the number of errors.

To get started transforming the PersonTest to a Person spec, add an

RSpec Rake task that will run the same tests:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/testunit/Rakefile
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=154

RUNNING TEST::UNIT TESTS WITH THE RSPEC RUNNER 155

Download testunit/Rakefile

require 'rubygems'

require 'spec/rake/spectask'

Spec::Rake::SpecTask.new do |t|

t.ruby_opts = ['-r test/unit']

t.spec_files = FileList['test/person_test.rb']

end

When RSpec gets loaded, it checks whether Test::Unit has been loaded

and, if it has, enables the bridge between RSpec and Test::Unit that

supports running tests with RSpec. By passing -r test/unit to the Ruby

interpreter, Test::Unit will be loaded before RSpec.

For now no other changes are needed, so go ahead and run the tests

with rake spec and you should see output like this:

.F

1)

Test::Unit::AssertionFailedError in 'PersonTest test_initials'

<"DA"> expected but was

<"DAs">.

./test/person_test.rb:15:in `test_initials'

Finished in 0.028264 seconds

2 examples, 1 failure

At this point, RSpec’s output is almost identical to that which we get

from Test::Unit, but the summary is different. It sums up code exam-

ples instead of tests, and it doesn’t discriminate between logical fail-

ures and execution errors. If something goes wrong it’s gotta get fixed.

It doesn’t really matter if it’s a failure or an error, and we’ll know all we

need to know as soon as we look closely at the detailed messages.

Enabling RSpec’s Test::Unit bridge from Rake is an easy way to start

when you want to get all your tests running through RSpec, but if

you want to run individual test cases from an editor like TextMate,

or straight from the command line using the ruby command, you’ll need

to modify the require ’test/unit’ statements wherever they appear.

If you’re using rspec-1.2 or later, change require ’test/unit’ to require ’spec/test/unit’.

With rspec-1.1.12 or earlier, use require ’spec/interop/test’. In either case,

you may also need to require ’rubygems’ first. Here’s what you’ll end up

with:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/testunit/Rakefile
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=155

RUNNING TEST::UNIT TESTS WITH THE RSPEC RUNNER 156

Generating RSpec HTML reports from Test::Unit tests

You saw how easy it was to make RSpec run your Test::Unit tests.
Once you’ve successfully done that, try to output a HTML report
for your tests. Just add --format html:result.html to RSpec’s com-
mand line.

If you’re using Rake to run your tests it’s just a matter of adding
the following line inside your SpecTask:

t.spec_opts = ['--format', 'html:result.html']

Then just open up result.html in a browser and enjoy the view!

Download testunit/test/person_test_with_rspec_required.rb

require File.join(File.dirname(__FILE__), "/test_helper.rb")

require 'rubygems'

require 'spec/test/unit'

Once you have done this, you no longer need the -r test/unit in the Rake-

file, so go ahead and remove it:

Download testunit/Rakefile

Spec::Rake::SpecTask.new do |t|

t.spec_files = FileList['test/person_test.rb']

end

Now run the test again with rake spec and you should get the same

output:

.F

1)

Test::Unit::AssertionFailedError in 'PersonTest test_initials'

<"DA"> expected but was

<"DAs">.

test/person_test_with_rspec_required.rb:19:in `test_initials'

test/person_test_with_rspec_required.rb:22:

Finished in 0.016624 seconds

2 examples, 1 failure

That’s all it takes to run Test::Unit tests with RSpec. And with that,

you’ve also taken the first step towards migrating to RSpec. You can

now start to refactor the tests themselves, and after every refactoring

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/testunit/test/person_test_with_rspec_required.rb
http://media.pragprog.com/titles/achbd/code/testunit/Rakefile
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=156

REFACTORING TEST::UNIT TESTS TO RSPEC CODE EXAMPLES 157

you’ll be able to run all the tests to ensure that your refactorings are

ok.

13.2 Refactoring Test::Unit Tests to RSpec Code Examples

Although you haven’t seen it yet, by loading RSpec’s Test::Unit bridge,

we have also snuck RSpec in the back door. All of RSpec’s API is now

available and ready to be used within this TestCase, and the refactor-

ings in this section will help you gradually change your tests to specs.

Describing Test::Unit::TestCases

The first step we’ll take is to add a describe() declaration to the TestCase,

as shown on line 6 in the code that follows:

Download testunit/test/person_test_with_describe.rb

Line 1 require File.join(File.dirname(__FILE__), "/test_helper.rb")
- require 'rubygems'
- require 'spec/test/unit'
-

5 class PersonTest < Test::Unit::TestCase
- describe('A Person')
-

- def setup
- @person = Person.new('Dave','Astels')

10 end

-

- def test_full_name
- assert_equal 'Dave Astels', @person.full_name
- end

15

- def test_initials
- assert_equal 'DA', @person.initials
- end

-

20 def teardown
- Person.unregister(@person)
- end

-

- end

This not only embeds intent right in the code, but it also adds docu-

mentation to the output. Go ahead and run rake spec and you should

get output like this:

.F

1)

Test::Unit::AssertionFailedError in 'A Person test_initials'

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/testunit/test/person_test_with_describe.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=157

REFACTORING TEST::UNIT TESTS TO RSPEC CODE EXAMPLES 158

<"DA"> expected but was

<"DAs">.

test/person_test_with_describe.rb:18:in `test_initials'

test/person_test_with_describe.rb:21:

Finished in 0.018498 seconds

2 examples, 1 failure

The String passed to describe() gets included in the failure message,

providing more context in which to understand the failure. Of course,

since we’ve only described the context, but haven’t migrated the tests

to code examples, the resulting “A Person test_initials” is a bit odd. But

that’s just temporary.

We can take this a step further and just use the describe() method to

generate RSpec’s counterpart to a TestCase, the Spec::ExampleGroup:

Download testunit/test/person_spec_with_setup_and_tests.rb

require File.join(File.dirname(__FILE__), "/test_helper.rb")

require 'rubygems'

require 'spec/test/unit'

describe('A Person') do

def setup

@person = Person.new('Dave','Astels')

end

def test_full_name

assert_equal 'Dave Astels', @person.full_name

end

def test_initials

assert_equal 'DA', @person.initials

end

def teardown

Person.unregister(@person)

end

end

This not only provides similar internal documentation, but it also reduces

the noise of the creation of the class, focusing on the DSL of describing

the behaviour of objects and making the code more readable. If you run

rake spec you should see the same output that was generated when we

added describe() to the TestCase.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/testunit/test/person_spec_with_setup_and_tests.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=158

REFACTORING TEST::UNIT TESTS TO RSPEC CODE EXAMPLES 159

So now we’ve got setup, teardown and test methods with assertions

wrapped inside the RSpec DSL. This is the hybrid you were warned

about earlier in this chapter, so let’s keep working our way from the

outside-in—time to get rid of those nasty tests!

test methods to examples

Now that we’ve replaced the concept of a TestCase with a group of exam-

ples, let’s continue inward and replace the tests with examples. We cre-

ate examples using the it() method within an example group. Here’s

what our Person examples look like in RSpec:

Download testunit/test/person_spec_with_examples.rb

require File.join(File.dirname(__FILE__), "/test_helper.rb")

require 'rubygems'

require 'spec/test/unit'

describe('A Person') do

def setup

@person = Person.new('Dave','Astels')

end

it "should include the first and last name in #full_name" do

assert_equal 'Dave Astels', @person.full_name

end

it "should include the first and last initials in #initials" do

assert_equal 'DA', @person.initials

end

def teardown

Person.unregister(@person)

end

end

Using strings passed to it() instead of method names that start with

“test” provides a much more fluid alternative to expressing the intent

of the example.

Running this with rake spec provides this output:

.F

1)

Test::Unit::AssertionFailedError in \

'A Person should include the first and last initials in #initials'

<"DA"> expected but was

<"DAs">.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/testunit/test/person_spec_with_examples.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=159

REFACTORING TEST::UNIT TESTS TO RSPEC CODE EXAMPLES 160

test/person_spec_with_examples.rb:17:

test/person_spec_with_examples.rb:6:

Finished in 0.020142 seconds

2 examples, 1 failure

Look how much more expressive that is! “A Person should include the

first and last initials in #initials” actually tells you something you can

tell your grandmother.

Two refactorings down, two to go. Next up, setup() and teardown().

before and after

RSpec runs the block passed to before(:each) before each example is

run. This is RSpec’s replacement for Test::Unit’s test-centric setup()

method.

RSpec also runs the block passed to after(:each) after each example is

run, replacing Test::Unit’s teardown().

So the next step is to simply replace setup() and teardown() with before()

and after():

Download testunit/test/person_spec_with_before_and_after.rb

require File.join(File.dirname(__FILE__), "/test_helper.rb")

require 'rubygems'

require 'spec/test/unit'

describe('A Person') do

before(:each) do

@person = Person.new('Dave','Astels')

end

it "should include the first and last name in #full_name" do

assert_equal 'Dave Astels', @person.full_name

end

it "should include the first and last initials in #initials" do

assert_equal 'DA', @person.initials

end

after(:each) do

Person.unregister(@person)

end

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/testunit/test/person_spec_with_before_and_after.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=160

REFACTORING TEST::UNIT TESTS TO RSPEC CODE EXAMPLES 161

This time, the output from rake spec should be exactly the same as when

setup() and teardown() were in place. We’re almost done with this refac-

toring now. There’s only one step left—converting assertions to RSpec

expectations.

should and should_not

The last step in refactoring from tests to RSpec code examples is replac-

ing assertions with RSpec expectations using should() and should_not().

Go ahead and replace the assert_equal with a should ==.

Download testunit/test/person_spec_with_should.rb

require File.join(File.dirname(__FILE__), "/test_helper.rb")

require 'rubygems'

require 'spec/test/unit'

describe('A Person') do

before(:each) do

@person = Person.new('Dave','Astels')

end

it "should include the first and last name in #full_name" do

@person.full_name.should == 'Dave Astels'

end

it "should include the first and last initials in #initials" do

@person.initials.should == 'DA'

end

after(:each) do

Person.unregister(@person)

end

end

This will produce the following output:

.F

1)

'A Person should include the first and last initials in #initials' FAILED

expected: "DA",

got: "DAs" (using ==)

test/person_spec_with_should.rb:17:

test/person_spec_with_should.rb:6:

Finished in 0.007005 seconds

2 examples, 1 failure

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/testunit/test/person_spec_with_should.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=161

WHAT WE JUST DID 162

As you see, the error messages from should failures are a little differ-

ent that the assert failures. We still have one passing and one failing

example, but the class name is gone. At this point, we’ve replaced the

class name and test name with the example group string (passed to

describe()) and the example string (passed to it()).

One last step

At this point it appears that the TestCase has been completely migrated

over to an RSpec ExampleGroup, but appearances can be deceiving. The

object returned by describe() is still a TestCase. You can see this by

adding puts self to the describe() block:

Download testunit/test/person_spec_with_puts.rb

describe('A Person') do

puts self

Run rake spec again and you should see Test::Unit::TestCase::Subclass_1

in the output. So now, as the final step in the conversion, remove

’test/unit’ from require ’spec/test/unit’, so you just have require ’spec’, and

run rake spec again. This time you’ll see Spec::Example::ExampleGroup::Subclass_1

instead, thus completing the migration.

13.3 What We Just Did

In this chapter we showed you how to refactor from tests to specs with

a series of refactorings that allow you to run all your tests/examples

between each step.

We started by converting TestCase classes to RSpec example groups

with the describe() method. Then the test methods became RSpec exam-

ples with it(). Next we converted the setup() and teardown() declarations

to before() and after(). Lastly, we converted the Test::Unit assertions to

RSpec expectations, using should() and should_not().

While the order does seem logical, you should know that you can do

these refactorings in any order. In fact, there is no technical reason that

you can not have test methods with RSpec expectations and RSpec code

examples with assertions all living happily side by side. The aesthetic

reasons for avoiding this are clear, but this does mean that you can

use Test::Unit extensions in your specs. Most notable are the Test::Unit

assertions that ship with Ruby on Rails, any of which can be called from

within an RSpec example.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/testunit/test/person_spec_with_puts.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=162

Chapter 14

Tools And Integration
In the Mastermind tutorial in Part I, you used the spec command to

run specs from a command line shell. In this chapter, we’ll show you

a number of command line options that you may not have tried out

yet, as well as how RSpec integrates with other command line tools like

Rake and autotest, and GUI editors like TextMate.

14.1 The spec Command

The spec command is installed when you install the rspec gem, and

provides a number of options that let you customize how RSpec works.

You can print a list of all these options by asking for help:

spec --help

Most of the options have a long form using two dashes and a shorthand

form using one dash. The help option, for example, can be invoked with

-h in addition to --help. We recommend you use the long form if you put

it in a script such as a Rakefile (for clarity) and the short form when

you run it directly from the command line (for brevity).

All of the command line options are also available when you run indi-

vidual spec files directly with the ruby command.

Running One Spec File

Running a single file is a snap. You can use the spec command or

even just the ruby command. For example, enter the following into sim-

ple_math_spec.rb:

require 'rubygems'

require 'spec'

Prepared exclusively for Simone Joswig

THE SPEC COMMAND 164

describe "simple math" do

it "should provide a sum of two numbers" do

(1 + 2).should == 3

end

end

Now run that file with the spec command:

spec simple_math_spec.rb

You should see output like this:

.

Finished in 0.00621 seconds

1 example, 0 failures

This is RSpec’s default output format, the progress bar format. It prints

out a dot for every code example that is executed and passes (only one

in this case). If an example fails, it prints an F. If an example is pending

it prints a *. These dots, F’s and *’s are printed after each example

is run, so when you have many examples you can actually see the

progress of the run, hence the name “progress bar.”

After the progress bar, it prints out the time it took to run and then

a summary of what was run. In this case, we ran one example and it

passed, so there are no failures.

Now try running it with the ruby command instead:

ruby simple_math_spec.rb

You should see the same output. When executing individual spec files,

the spec and ruby commands are somewhat interchangeable. We do,

however, get some added value from the spec command when running

more than just one file.

Running Several Specs at Once

Running specs directly is handy if you just want to run one single file,

but in most cases you really want to run many of them in one go. The

simplest way to do this is to just pass the directory containing your

spec files to the spec command. So if your spec files are in the spec

directory (they are, aren’t they?), you can just do this:

spec spec

...or if you’re in a Rails project:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=164

THE SPEC COMMAND 165

script/spec spec

In either case, the spec command will load all of the spec files in the

spec directory and its sub-directories. By default, the spec command

only loads files ending with _spec.rb. As you’ll see later in this chapter,

while this pattern is the convention, you can configure RSpec to load

files based on any pattern you choose.

Being able to execute the files is only the tip of the iceberg. The spec

command offers quite a few options, so let’s take a closer look at them.

Diff output with --diff

One of the most common expectations in code examples is that an

object should match an expected value. For example, comparing two

strings:

Download tools/command_line/diff_spec.rb

bill.to_text.should == <<-EOF

From: MegaCorp

To: Bob Doe

Ref: 9887386

Note: Please pay imminently

EOF

The here doc defines the expected result, and it is compared to the

actual result of the to_text() method. If the to_text() method returns a

different string the example will fail, and if the difference is subtle it

can be hard to spot. Let’s assume we goofed the implementation by

forgetting to add the last name and hardcoded a silly message because

we were irritated and working overtime. Without the --diff option the

output would be:

expected: "From: MegaCorp\nTo: Bob Doe\nRef: 9887386\nNote: Please pay ...

got: "From: MegaCorp\nTo: Bob\nRef: 9887386\nNote: We want our money ...

It’s not exactly easy to spot where the difference is. Now, let’s add the

--diff option to the command line and run it again. This time we’ll see:

Diff:

@@ -1,5 +1,5 @@

From: MegaCorp

-To: Bob

+To: Bob Doe

Ref: 9887386

-Note: We want our money!

+Note: Please pay imminently

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/tools/command_line/diff_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=165

THE SPEC COMMAND 166

The diff format shows the difference of each line. It uses Austin Ziegler’s

excellent diff-lcs Ruby gem, which you can install with:

gem install diff-lcs

Diffing is useful for more than strings. If you compare two objects that

are not strings, their #inspect representation will be used to create the

diff.

Tweaking the output with --format

By default, RSpec will report the results to the console’s standard out-

put by printing something like ...F......F.... followed by a backtrace for each

failure. This is fine most of the time, but sometimes you’ll want a more

expressive form of output. RSpec has several built-in formatters that

provide a variety of output formats. You can see a full list of all the

built-in formatters with RSpec’s --help option.

For example, the specdoc formatter can be used to print out the results

as specdoc. The specdoc format is inspired from TestDox (see the side-

bar).

You activate it simply by telling the spec command:

spec path/to/my/specs --format specdoc

The output will look something like the following:

Stack (empty)

- should be empty

- should not be full

- should add to the top when sent #push

- should complain when sent #peek

- should complain when sent #pop

Stack (with one item)

- should not be empty

- should return the top item when sent #peek

- should NOT remove the top item when sent #peek

- should return the top item when sent #pop

- should remove the top item when sent #pop

- should not be full

- should add to the top when sent #push

If you use nested example groups, like this:

describe Stack do

context "when empty" do

it "should be empty" do

Then you can use the nested format, like this:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=166

THE SPEC COMMAND 167

TestDox

In 2003, Chris Stevenson, who was working with Aslak in Thought-
Works at the time, created a little Java tool called Test-
Dox (http://agiledox.sourceforge.net/). What it did was simple: It
scanned Java source code with JUnit tests and produced tex-
tual documentation from it. The following Java source code...

public class AccountDepositTest extends TestCase {
public void testAddsTheDepositedAmountToTheBalance() { ... }

}

...would produce the following text:

Account Deposit
- adds the deposited amount to the balance

It was a simplistic tool, but it had a profound effect on the teams
that were introduced to it. They started publishing the TestDox
reports for everyone to see, encouraging the programmers to
write real sentences in their tests, lest the TestDox report should
look like gibberish.

Having real sentences in their tests, the programmers started to
think about behaviour, what the code should do, and the BDD
snowball started to roll...

spec path/to/my/specs --format nested

and generate output like this:

Stack

when empty

should be empty

should not be full

should add to the top when sent #push

should complain when sent #peek

should complain when sent #pop

with one item

should not be empty

should return the top item when sent #peek

should NOT remove the top item when sent #peek

should return the top item when sent #pop

should remove the top item when sent #pop

should not be full

should add to the top when sent #push

RSpec also bundles a formatter that can output the results as HTML.

You probably don’t want to look at the HTML in a console, so you should

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://agiledox.sourceforge.net/
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=167

THE SPEC COMMAND 168

Several formatters?

RSpec lets you specify several formatters simultaneously by
using several --format options on the command line. Now why
would anyone want to do that? Maybe you’re using a continu-
ous integration (CI) environment to build your code on every
checkin. If both you and the CI use the same Rake tasks to
run RSpec, it can be convenient to have one progress format-
ter that goes to standard output, and one HTML formatter that
goes to a file.

This way you can see the CI RSpec result in HTML and your own
in your console—and share the Rake task to run your specs.

tell RSpec to output the HTML to a file:

spec path/to/my/specs --format html:path/to/my/report.html

For all of the formatters, RSpec will treat whatever comes after the

colon as a file, and write the output there. Of course, you can omit the

colon and the path, and redirect the output to a file with >, but using

the --format flag supports output of multiple formats simultaneously to

multiple files, like so:

spec path/to/my/specs --format progress \

--format nested:path/to/my/report.txt \

--format html:path/to/my/report.html

After you have done this and opened the resulting HTML file in a browser,

you should see something like Figure 14.1, on the next page.

Finally, the profile formatter works just like the default progress format-

ter, except that it also outputs the 10 slowest examples. We really rec-

ommend using this to constantly improve the speed of your code exam-

ples and application code.

Loading extensions with --require

If you’re developing your own extensions to RSpec, such as a custom

--formatter or maybe even a custom --runner, you must use the --require

option to load the code containing your extension.

The reason you can’t do this in the spec files themselves is that when

they get loaded, it’s already too late to hook in an RSpec plugin, as

RSpec is already running.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=168

THE SPEC COMMAND 169

Figure 14.1: HTML Report

Getting the noise back with --backtrace

Have you ever seen a backtrace from a failing test in an xUnit tool? It

usually starts with a line in your test or the code being tested, and then

further down you’ll see ten furlongs of stack frames from the testing

tool itself. All the way to where the main thread started.

Most of the time, most of the backtrace is just noise, so with RSpec

you’ll only see the frames from your code. The entire backtrace can be

useful from time to time, such as when you think you may have found

a bug in RSpec, or when you just want to see the whole picture of why

something is failing. You can get the full backtrace with the --backtrace

flag:

spec spec --backtrace

Colorize Output with --color

If you’re running the specs all the time (you are, aren’t you?), it requires

some focus to notice the difference between the command line output

from one run and the next. One thing that can make it easier on the

eyes is to colorize the output, like this:

spec spec --color

With this option, passing examples are indicated by a green dot (.),

failing examples by a red F, and pending examples by a yellow asterisk

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=169

TEXTMATE 170

(*). Error reports for any failing examples are red.

The summary line is green if there are no pending examples and all

examples pass. If there are any failures it is red. If there are no failures,

but there are pending examples, it is yellow. This makes it much easier

to see what’s going on by just looking at the summary.

Invoke With Options Stored in a File with --options

You can store any combination of these options in a file and tell the

spec command where to find it. For example, you can add this to

spec/spec.opts:

--color

--format specdoc

You can list as many options as you want, with one or more words per

line. As long as there is a space, tab or newline between each word,

they will all be parsed and loaded. Then you can run the code examples

with this command:

spec spec --options spec/spec.opts

That will invoke the options listed in the file.

Generate an Options File with --generate-options

The --generate-options option is a nice little shortcut for generating the

options file referenced in the previous section. Let’s say that we want

to generate spec/spec.opts with --color and --format html:examples.html.

Here’s what the command would look like:

spec --generate-options spec/spec.opts \

--color \

--format html:examples.html

Then you can run the specs using the –options option:

spec spec --options spec/spec.opts

14.2 TextMate

The RSpec Development Team maintains a TextMate bundle which pro-

vides a number of useful commands and snippets. The bundle has been

relatively stable for some time now, but when we add new features to

RSpec, they are sometimes accompanied with an addition or a change

to the TextMate bundle.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=170

AUTOTEST 171

We maintain the bundle in two different locations: in the official Text-

Mate Bundle subversion repository at http://svn.textmate.org/trunk/Bundles/

RubyRSpec.tmbundle and our development source repository at http://

github.com/dchelimsky/rspec-tmbundle.

We update the subversion repository with each rspec release, so if

you prefer to stick with rspec releases, the official TextMate reposi-

tory is a simple and clean option. Just follow the bundle maintenance

instructions on the TextMate website at http://manual.macromates.com/

en/bundles.

If, however, you’re an early adopter who likes to keep a local copy of

rspec’s git repository and update it regularly to keep up with the latest

changes, then you’ll want to do the same with the TextMate bundle.

Instructions for this can be found on the rspec-tmbundle github wiki

at http://github.com/dchelimsky/rspec-tmbundle/wikis.

14.3 Autotest

Autotest is one of several tools that ship with Seattle.rb’s ZenTest library.

The basic premise is that you open up a shell, fire up autotest, and it

monitors changes to files in specific locations. Based on its default map-

pings, every time you save a test file, autotest will run that test file. And

every time you save a library file, autotest will run the corresponding

test file.

When you install the rspec gem, it installs an autospec command, which

is a thin wrapper for autotest that lets you use autotest with projects

developed with RSpec.

To try this out, open up a shell and cd to the mastermind directory that

you created back in Chapter 2, Describing Features with Cucumber, on

page 20. If you use command line editors like vim or emacs, open up a

second shell to the same directory, otherwise open the project in your

favorite text editor.

In the first shell, type the autospec command. You should see it start

up and execute a command which loads up some number of spec files

and runs them. Now, go to one of the spec files and change one of the

code examples so it will fail and save the file. When you do, autotest

will execute just that file and report the failure to you. Note that it only

runs that file, not all of the code example files.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://svn.textmate.org/trunk/Bundles/Ruby RSpec.tmbundle
http://svn.textmate.org/trunk/Bundles/Ruby RSpec.tmbundle
http://github.com/dchelimsky/rspec-tmbundle
http://github.com/dchelimsky/rspec-tmbundle
http://manual.macromates.com/en/bundles
http://manual.macromates.com/en/bundles
http://github.com/dchelimsky/rspec-tmbundle/wikis
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=171

HECKLE 172

Now reverse the change you just made so the example will pass and

save the file again. What autotest does now is quite clever. First it runs

the one file, which is the one with failures from the last run, and sees

that all the examples pass. Once it sees that the previous failures are

now passing, it loads up the entire suite and runs all of the examples

again.

I can tell you that when I first heard about autotest, I thought it sounded

really interesting, but wasn’t moved by it. Then I actually tried it. All I

can say is try it.

By default, autotest maps files in the lib directory to corresponding files

in the test directory. For example, if you have a lib/account.rb file and

a test/test_account.rb file, each time you save either autotest will run

test/test_account.rb.

These mappings are completely configurable, so if you prefer to name

your test files account_test.rb instead of test_account.rb, you can config-

ure autotest to pay attention to files ending with _test.rb rather than

starting with test_. See the ZenTest rdoc for more information about

configuring these mappings.

RSpec uses standard autotest hooks to modify the autotest mappings

to cater to RSpec’s conventions. So if you run autospec and you mod-

ify spec/mastermind/game_spec.rb or lib/mastermind/game.rb, autotest will

run spec/mastermind/game_spec.rb.

rspec-rails modifies the mappings even further, so when you save app/models/account.rb,

its code examples in spec/models/account_spec.rb will be run automati-

cally.

14.4 Heckle

Heckle is a mutation testing tool written by Ryan Davis and Kevin Clark.

From heckle’s rdoc:

Heckle is a mutation tester. It modifies your code and runs your tests to

make sure they fail. The idea is that if code can be changed and your

tests don’t notice, either that code isn’t being covered or it doesn’t do

anything.

To run heckle against your specs, you have to install the heckle gem,

and then identify the class you want to heckle on the command line.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=172

HECKLE 173

To heckle the Game class from the Mastermind tutorial in Part I, you

would do this:

spec spec/mastermind/game_spec.rb --heckle Mastermind::Game

Depending on how far you got in the tutorial, the output looks some-

thing like this:

Line 1 **
2 *** Mastermind::Game#start loaded with 4 possible mutations
3 **
4

5 4 mutations remaining...
6 3 mutations remaining...
7 2 mutations remaining...
8 1 mutations remaining...
9 No mutants survived. Cool!

Line 2 indicates that heckle found four opportunities to mutate the

code in the start() method. Heckle prints out 4 mutations remaining..., and

mutates the code. Perhaps it changes the value of an argument to the

method. Perhaps it changes a conditional expression to return true or

false, rather than performing a calculation.

Heckle then runs the examples against the mutated code. If the muta-

tion survives, meaning there are no failures, then the examples aren’t

really robust enough to fully cover all of the different paths through the

code. It is, therefore, a good thing if the mutation does not survive.

“No mutants survived”, on line 9, tells us that there were failures after

each mutation, so our code examples are sufficiently robust.

You can run heckle against all of the classes in a module by naming

just that module. This command would run all of the specs in the spec/

directory, and heckle every class it could find in the Mastermind mod-

ule.

spec spec --heckle Mastermind

You can also run heckle against a single method, like so:

spec spec --heckle Mastermind::Game#start

This would only heckle the start() method, ignoring the other methods

defined in the Game class.

As of version 1.4.1, released back in 2007, heckle will only mutate

instance methods, so this won’t check your class methods or meth-

ods defined in a module, unless that module is included in a class that

heckle can find.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=173

RAKE 174

14.5 Rake

Rake is a great automation tool for Ruby, and RSpec ships with custom

tasks that let you use RSpec from Rake. You can use this to define

one or several ways of running your examples. For example, rspec-rails

ships with several different tasks:

rake spec # Run all specs in spec directory (excluding plugin specs)

rake spec:controllers # Run the code examples in spec/controllers

rake spec:helpers # Run the code examples in spec/helpers

rake spec:models # Run the code examples in spec/models

rake spec:views # Run the code examples in spec/views

This is only a partial list. To see the full list, cd into the root of any rails

app you have using RSpec and type rake -T | grep "rake spec". All of these

tasks are defined using the Spec::Rake::SpecTask.

Spec::Rake::SpecTask

The Spec::Rake::SpecTask class can be used in your Rakefile to define a

task that lets you run your specs using Rake. The simplest way to use

it is to put the following code in your Rakefile:

require 'spec/rake/spectask'

Spec::Rake::SpecTask.new

This will create a task named spec that will run all of the specs in

the spec directory (relative to the directory rake is run from—typically

the directory where Rakefile lives). Let’s run the task from a command

window:

rake spec

Now that’s simple! But that’s only the beginning. The SpecTask exposes

a collection of useful configuration options that let you customize the

way the command runs.

To begin with, you can declare any of the command line options. If you

want to have the SpecTask colorize the output, for example, you would

do this:

Spec::Rake::SpecTask.new do |t|

t.spec_opts = ["--color"]

end

spec_opts takes an Array of Strings, so if you also wanted to format the

output with the specdoc format, you could do this:

Spec::Rake::SpecTask.new do |t|

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=174

RCOV 175

About Code Coverage

Code coverage is a very useful metric, but be careful, as it can
be misleading. It is possible to have a suite of specs that exe-
cute 100% of your codebase without ever setting any expecta-
tions. Without expectations you’ll know that the code will prob-
ably run, but you won’t have any way of knowing if it behaves
the way you expect it to.

So while low code coverage is a clear indicator that your specs
need some work, high coverage does not necessarily indicate
that everything is honky-dory.

t.spec_opts = ["--color", "--format", "specdoc"]

end

Check the rdoc for Spec::Rake::SpecTask to see the full list of configura-

tion options.

14.6 RCov

RCov is a code coverage tool. The idea is that you run your specs and

rcov observes what code in your application is executed and what is

not. It then provides a report listing all the lines of code that were never

executed when you ran your specs, and a summary identifying the per-

centage of your codebase that is covered by specs.

There is no command line option to invoke rcov with RSpec, so you

have to set up a rake task to do it. Here’s an example (this would go in

Rakefile):

require 'rake'

require 'spec/rake/spectask'

namespace :spec do

desc "Run specs with RCov"

Spec::Rake::SpecTask.new('rcov') do |t|

t.spec_files = FileList['spec/**/*_spec.rb']

t.rcov = true

t.rcov_opts = ['--exclude', '\/Library\/Ruby']

end

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=175

RCOV 176

This is then invoked with rake spec:rcov and produces a report that

excludes any file with /Library/Ruby as part of its path. This is useful if

your library depends on other gems, because you don’t want to include

the code in those gems in the coverage report. See rcov’s documentation

for more info on the options it supports.

As you can see, RSpec’s spec command offers you a lot of opportunities

to customize how RSpec runs. Combine that with powerful tools like

Rake, Autotest, and Heckle and you’ve got a great set of tools you can

use to drive out code with code examples, and run metrics against your

specs to make sure you’ve got good code coverage (with rcov) and good

branch coverage (with heckle).

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=176

Chapter 15

Extending RSpec
RSpec provides a wealth of functionality out of the box, but sometimes

we want to express things in more domain specific ways, or modify the

output format to make it better serve as documentation for a specific

audience. In this chapter, we’ll explore the utilities and extension points

that RSpec provides to satisfy these needs.

15.1 Global Configuration

RSpec exposes a configuration object that supports the definition of

global before and after blocks, as well as hooks to include modules in

examples, or extend example group classes. We can access it via the

Spec::Runner module like this:

Spec::Runner.configure {|config| ... }

The config block argument is the configuration object, and it exposes

the following methods:

before(scope = :each, options={}, &block) Though more commonly used,

this is an alias for append_before.

append_before(scope = :each, options={}, &block) Appends the sub-

mitted block to the list of before blocks that get run by every

example group. scope can be any of :each, :all, or :suite. If :each,

the block is run before each example. If :all, the block is run once

per group, before any examples have been run. If :suite, the block

is run once before any example groups have run.

Prepared exclusively for Simone Joswig

GLOBAL CONFIGURATION 178

The only supported option is :type, which allows you to limit the

inclusion of this before block to example groups of the specified

type. For example, with rspec-rails, you might say something like:

config.before(:each, :type => :controller) do

...

end

This would cause the submitted block to be run before each con-

troller example, but no other types of examples. See Section 15.2,

Custom Example Groups, on the next page for more information.

prepend_before(scope = :each, options={}, &block) Just like append_before(),

but adds the block to the beginning of the list instead of the end.

This is rarely useful, as anything added to the global list is going

to run before anything added in individual example groups and

examples. If you’re using another library that extends RSpec, how-

ever, and you really need your before block to run first, prepend_before()

is your friend.

after(scope = :each, options={}, &block) Though more commonly used,

this is an alias for prepend_after.

prepend_after(scope = :each, options={}, &block) Adds the submitted

block to the beginning of the list of after blocks that get run by

every example group. See append_before(), above, for notes about

scope.

append_after(scope = :each, options={}, &block) Just like prepend_after(),

but adds the block to the end of the list.

include(*modules, options={}) Includes the submitted module or mod-

ules in every example group. Methods defined in submitted mod-

ules are made available to every example.

Like the before() and after() methods, the options hash supports a

:type option that lets you limit the inclusion of the module(s) to a

specific type of example group.

extend(*modules, options={}) Extends every example group with the

submitted module or modules. Methods defined in submitted mod-

ules are made available to every example group. This is the easiest

way to make macros (see Section 15.4, Macros, on page 186) avail-

able to example groups.

mock_with(framework) By default, RSpec uses its own mocking frame-

work. You can, however, choose any framework. framework can be

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=178

CUSTOM EXAMPLE GROUPS 179

a Symbol or a module reference. If it’s a symbol, it can be any

of :rspec (default), :mocha, :flexmock, and :rr. These all reference

adapters that ship with RSpec.

If you use a different mock framework, or perhaps you’ve written

your own, you can write an adapter module for it, and then pass

that module to mock_with(). See Chapter 12, Mocking in RSpec, on

page 151 for more information about writing your own adapter.

Each of these methods supports extending example groups by includ-

ing modules, extending them with modules, or adding to their lists of

before and after blocks. While these are very useful ways of extending

groups, sometimes we need something a bit more robust. For cases like

this, we can write our own example group classes.

15.2 Custom Example Groups

In Michael Feathers’ presentation at SD West 2007, API Design As If

Unit Testing Mattered,1 he suggested that API designers should not

just test their own code, but they should test code that uses their code!

He also suggested that they should ship the tools that they develop to

do this with the software, so that developers using their APIs have an

easy path to testing their own code.

If you’ve worked with Ruby on Rails’ built-in testing support, you know

well the result of doing this. Rails’ ships with specialized subclasses

of Test::Unit::TestCase that bring us domain-specific commands like get()

and post(), and assertions like assert_template(). These extensions make

tests for our rails apps a joy to write and a snap to read.

In the next part of the book, you’ll learn about rspec-rails, the exten-

sion library that brings RSpec to Rails development. The rspec-rails

gem ships with custom example groups that actually extend the Rails

TestCase classes, providing developers with all of the utilities that ship

with Rails, plus the additional facilities that come with RSpec.

In this section, we’ll explore approaches to authoring custom example

groups. Whether shipping a domain-specific spec framework with your

library, or developing one for internal use, we think you’ll find this quite

simple and flexible.

1. http://www.objectmentor.com/resources/articles/as_if_unit_testing_mattered.pdf

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://www.objectmentor.com/resources/articles/as_if_unit_testing_mattered.pdf
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=179

CUSTOM EXAMPLE GROUPS 180

Object Model

In order to understand how and when to write a custom example group

class, let’s explore RSpec’s object model first. It is quite simple but,

because it is hidden behind RSpec’s DSL, it is not always easy to spot

without some internal inspection. Here’s an example for discussion:

describe Account do

it "has a balance of zero when first created" do

account = Account.new

account.balance.should == Money.new(0)

end

end

As you read in Section 10.1, Describe It!, on page 108, the describe()

method creates a subclass of Spec::Example::ExampleGroup, and the it()

method creates a method on that class. If you look at the code for

Spec::Example::ExampleGroup, however, you’ll only see this:

module Spec

module Example

class ExampleGroup

extend Spec::Example::ExampleGroupMethods

include Spec::Example::ExampleMethods

end

end

end

Spec::Example::ExampleGroup is really just a wrapper for the Example-

GroupMethods and ExampleMethods modules that define the behaviour of

an example group. This design lets RSpec use Spec::Example::ExampleGroup

as a default example group base class, while also allowing us to choose

an entirely different base class and add RSpec behaviour to it.

This is how RSpec supports interoperability with test/unit. We just re-

open Test::Unit::TestCase, and add RSpec behaviour to it. Of course, in the

case of test/unit it’s not quite that simple because RSpec does some

things that test/unit already does, so there is some monkey patch-

ing involved. But given that test/unit ships with Ruby 1.8, the risk of

changes to test/unit impacting RSpec and, consequently, RSpec users,

is very low.

So now we have three ways to write a custom example group base

class. We can subclass Spec::Example::ExampleGroup, we can write our

own from scratch, adding example group behaviour the same way that

RSpec does in Spec::Example::ExampleGroup, or we can add the behaviour

to a class from an entirely different library like test/unit, or minitest.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=180

CUSTOM EXAMPLE GROUPS 181

Registering a custom default example group class

Once we have a custom subclass, we need to tell RSpec to use it instead

of its own ExampleGroup class. We do this by registering the class with

RSpec’s ExampleGroupFactory. Here’s how we register a custom class as

the default base class for example groups:

Spec::Example::ExampleGroupFactory.default(CustomExampleGroup)

This does two powerful things. First, the describe() method creates a

subclass of CustomExampleGroup (in this example). Second, CustomEx-

ampleGroup is assigned to the constant, Spec::ExampleGroup, which is

guaranteed to reference the default base class whether its RSpec’s own

Spec::Example::ExampleGroup or a custom class. If a library ships with its

own default base class, end-users can still add facilities to it by simply

re-opening Spec::ExampleGroup and add utilities to it, regardless of its

class.

Named example group classes

Developing our own subclass is a nice first step, but sometimes we

have different needs for different parts of our system. In rspec-rails,

for example, we have different example groups for specifying models,

controllers, views, and even helpers and routing. Each of these types of

example groups has different needs.

Controller specs need methods like get() and post(), and expectations

like should render_template(). Model specs don’t need any of those facil-

ities, but they do need a means of isolating database state from one

example to the next.

In order to support different example group classes for different pur-

poses within a single spec suite, RSpec’s ExampleGroupFactory lets us

register classes with keys to access them. Here’s how rspec-rails does

this with its ControllerExampleGroup:

Spec::Example::ExampleGroupFactory.register(:controller, self)

This code appears within the ControllerExampleGroup, so self is referenc-

ing that.

Once a class is registered, we can coerce RSpec into returning a sub-

class of the class we want in two different ways. The more obvious way

is to explicitly name it in the describe() declaration, like this:

describe WidgetsController, :type => :controller do

...

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=181

CUSTOM MATCHERS 182

When the ExampleGroupFactory receives this request (delegated from the

call to describe()), it first looks to see if a :type is declared. If so, it returns

a subclass of the class registered with that name.

If you’re already an rspec-rails user, you very likely have not seen that

options hash appended to calls to describe() before. That’s because

when the ExampleGroupFactory fails to find a :type key in the request, it

then inspects the path to the file in which the group was declared. In the

case of controller specs, they are conventionally stored in spec/controllers.

The ExampleGroupFactory extracts “controllers” from that path, converts

it from a string to a symbol, and looks to see if it has a class registered

with :controllers as its key.

If there is no :type declaration and no subclass mapped to the path,

then the ExampleGroupFactory creates a subclass of the default example

group class.

Now that we have a means of separating behaviour for different needs

in different example group classes, the next thing we’ll talk about is

how to develop custom matchers that speak in our domain.

15.3 Custom Matchers

RSpec’s built-in matchers support most of the expectations we’d like to

write in our examples out of the box. There are cases, however, in which

a subtle change would allow us to express exactly what we want to say

rather than almost exactly what we want to say. For those situations

we can easily write our own custom matchers.

You’re already using some of these if you’re using the rspec-rails gem.

render_template(), for example, is a Rails-domain-specific matcher for

expecting that a specific template gets rendered by a controller action.

Without that matcher, we’d write expectations such as:

response.rendered_template.should == "accounts/index"

With this custom matcher, we are able to write examples using lan-

guage closer to the domain:

response.should render_template("accounts/index")

All of RSpec’s built-in matchers follow a simple protocol, which we use

to write our own custom matchers from scratch. We’ll go over the the

protocol in a bit, but first let’s take a look at RSpec’s Matcher DSL for

defining custom matchers in just a few lines of code.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=182

CUSTOM MATCHERS 183

Matcher DSL

RSpec’s Matcher DSL makes defining custom matchers a snap.2 Let’s

say we’re working on a personnel application and we want to specify

that joe.should report_to(beatrice).

To get there, we’d probably start off with something like joe.reports_to?(beatrice).should

be_true. That’s a good start, but it presents a couple of problems. If it

fails, the failure message says expected true, got false. That’s accurate,

but not very helpful.

Another problem is that it just doesn’t read as well as it could. We

really want to say joe.should report_to(beatrice). And if it fails, we want

the message to tell us we were expecting an employee who reports to

beatrice.

We can solve the readability and feedback problems using RSpec’s Matcher

DSL to generate a report_to() method, like this:

Spec::Matchers.define :report_to do |boss|

match do |employee|

employee.reports_to?(boss)

end

end

The define() method on Spec::Matchers defines a report_to() method that

accepts a single argument. We can then call report_to(beatrice) to create

an instance of Spec::Matchers::Matcher configured with beatrice as the

boss, and the match declaration stored for later evaluation.

Now when we say that joe.should report_to(beatrice), the report_to method

creates a in instance of Spec::Matchers::Matcher that will call the block

with joe.

The match block should return a boolean value. True indicates a match,

which will pass if we use should() and fail if we use should_not(). False

indicates no match, which will do the reverse: fail if we use should() and

pass if we use should_not().

In the event of a failure, the matcher generates a message from its name

and the expected and actual values. In this example the message would

be something like this:

expected <Employee: Joe> to report to <Employee: Beatrice>

2. The matcher DSL is based on suggestions from Yehuda Katz.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=183

CUSTOM MATCHERS 184

The representation of the employee objects depends on how to_s() is

implemented on the Employee class, but the matcher gleans “report to”

from the Symbol passed to define().

In the event of a failure using should_not(), the generated message would

read like this:

Spec::Matchers.define :report_to do |boss|

match do |employee|

employee.reports_to?(boss)

end

failure_message_for_should do |employee|

"expected the team run by #{boss} to include #{employee}"

end

failure_message_for_should_not do |employee|

"expected the team run by #{boss} to exclude #{employee}"

end

description do

"expected a member of the team run by #{boss}"

end

end

Those messages work generally well, but sometimes we’ll want a bit of

control over the failure messages. We can get that by overriding them,

and the description, with blocks that returns the messages we want.

Spec::Matchers.define :report_to do |boss|

match do |employee|

employee.reports_to?(boss)

end

failure_message_for_should do |employee|

"expected the team run by #{boss.inspect} to include #{employee.inspect}"

end

failure_message_for_should_not do |employee|

"expected the team run by #{boss.inspect} to exclude #{employee.inspect}"

end

description do

"expected a member of the team run by #{boss.inspect}"

end

end

The block passed to failure_message_for_should() will be called and the

result displayed in the event of a should() failure. The block passed to

failure_message_for_should_not() will be called and the result displayed

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=184

CUSTOM MATCHERS 185

in the event of a should_not() failure. The description() will be displayed

when this matcher is used to generate its own description.

As with the stock matchers, RSpec’s matcher DSL will probably cover

80% of the remaining 20%. Still, there are cases where you’ll want even

more control over certain types of things. As of this writing, for example,

there is no support for passing a block to the matcher itself. RSpec’s

built-in change() matcher needs that ability to express expectations like

this:

account = Account.new

lambda do

account.deposit(Money.new(50, :USD))

end.should change{ account.balance }.by(Money.new(50, :USD))

We can’t easily define a matcher that accepts a block with the DSL

because Ruby won’t let us pass one block to another without first pack-

aging it as a Proc object. We probably could do it with some gymnastics,

but in cases like this it is often simpler to just write some clear code

using RSpec’s Matcher Protocol.

Matcher Protocol

A matcher in RSpec is any object that responds to a specific set of

messages. The simplest matchers only need to respond to these two:

matches? The should() and should_not() methods use this to decide if

the expectation passes or fails. Return true for a passing expec-

tion; false for a failure.

failure_message_for_should The failure message to be used when you

use should() and matches?() returns false.

Here’s the report_to() matcher we used in Section 15.3, Matcher DSL, on

page 183, written using these two methods:

class ReportTo

def initialize(manager)

@manager = manager

end

def matches?(employee)

@employee = employee

employee.reports_to?(@manager)

end

def failure_message_for_should

"expected #{@employee} to report to #{@manager}"

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=185

MACROS 186

end

def report_to(manager)

ReportTo.new(manager)

end

This is clearly more verbose than the Matcher DSL, as we have to define

a class and a method. We also have to store state in order to generate

the failure message, which is not necessary in the DSL because it deliv-

ers the actual and expected objects to the match and message declara-

tion blocks. Still, if writing a matcher out this way is more expressive

than using the DSL in a given circumstance, then a custom matcher

from scratch is the way to go.

The following methods are also part of the protocol, supported by the

should() and should_not() methods, but completely optional:

failure_message_for_should_not optional - the failure message to be

used when you use should_not() and matches?() returns true.

description optional - the description to be displayed when you don’t

provide one for the example (i.e. it { ... } instead of it "should ... " do ...

end)

does_not_match? optional - rarely needed, but on occasion it can be

useful for the matcher to know if it’s being called by should() or

should_not(). does_not_match?() will only be called by should_not()

With just these few methods and the expressive support of the Ruby

language, we can create some sophistocated matchers. While we recom-

mend using the Matcher DSL first, this simple protocol offers a robust

back-up plan.

15.4 Macros

Custom matchers can help us to build up domain-specific DSLs for

specifying our code, but they still require a bit of repetative ceremony.

In rspec-rails, for example, it is quite common to see examples like this:

describe Widget do

it "requires a name" do

widget = Widget.new

widget.valid?

widget.should have(1).error_on(:name)

end

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=186

MACROS 187

With a custom matcher, we can clean that up a bit:

describe Widget do

it "requires a name" do

widget = Widget.new

widget.should require_attribute(:name)

end

end

We can even get more terse by taking advantage of the implicit subject,

which you read about in Section 11.7, Implicit Subject, on page 149,

like this:

describe Widget do

it { should require_attribute(:name) }

end

Now that is terse, expressive, and complete all at the same time. But

for the truly common cases like this, we can do even better. In 2006,

the shoulda library emerged as an alternative to RSpec for writing more

expressive tests.3 One of the innovations that came from shoulda was

macros to express the common, redundant things we want to express

in tests. Here’s the widget example with a shoulda macro instead of a

custom matcher:

class WidgetTest < Test::Unit::TestCase

should_require_attributes :name

end

In late 2007, Rick Olsen introduced his own rspec-rails extension library

named rspec_on_rails_on_crack.4, which added macros to rspec-rails.

In rspec_on_rails_on_crack, the widget example looks like this:

describe Widget do

it_validates_presence_of Widget, :name

end

Macros like this are great for the things that are ubiquitous in our

applications, like Rails’ model validations. They’re a little bit like shared

example groups, which you read about in Section 10.5, Shared Exam-

ples, on page 121, but they are more expressive because they have

unique names, and, unlike shared examples, they can accept argu-

ments.

Macros are also quite easy to add to RSpec. Let’s explore a simple exam-

ple. Here is some code that you might find in a typical controller spec.

3. http://www.thoughtbot.com/projects/shoulda

4. http://github.com/technoweenie/rspec_on_rails_on_crack

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://www.thoughtbot.com/projects/shoulda
http://github.com/technoweenie/rspec_on_rails_on_crack
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=187

MACROS 188

describe ProjectsController do

context "handling GET index" do

it "should render the index template" do

get :index

controller.should render_template("index")

end

it "should assign @projects => Project.all" do

Project.should_receive(:all).and_return(['this array'])

get :index

assigns[:projects].should == ['this array']

end

end

end

This would produce output like this:

ProjectsController handling GET index

- should render the index template

- should assign @projects => Project.all

Using macros inspired by rspec_on_rails_on_crack and shoulda, we can

express the same thing at a higher level and get the same output like

this:

Download extending_rspec/macro_example/spec/controllers/projects_controller_spec.rb

describe ProjectsController do

get :index do

should_render "index"

should_assign :projects => [Project, :all]

end

end

The underlying code is quite simple for the experienced Rubyist:

Download extending_rspec/macro_example/spec/spec_helper.rb

module ControllerMacros

def should_render(template)

it "should render the #{template} template" do

do_request

response.should render_template(template)

end

end

def should_assign(hash)

variable_name = hash.keys.first

model, method = hash[variable_name]

model_access_method = [model, method].join('.')

it "should assign @#{variable_name} => #{model_access_method}" do

expected = "the value returned by #{model_access_method}"

model.should_receive(method).and_return(expected)

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/extending_rspec/macro_example/spec/controllers/projects_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/extending_rspec/macro_example/spec/spec_helper.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=188

MACROS 189

do_request

assigns[variable_name].should == expected

end

end

def get(action)

define_method :do_request do

get action

end

yield

end

end

Spec::Runner.configure do |config|

config.use_transactional_fixtures = true

config.use_instantiated_fixtures = false

config.fixture_path = RAILS_ROOT + '/spec/fixtures/'

config.extend(ControllerMacros, :type => :controller)

end

The get() method defines a method that is used internally within the

macros named do_request(), and yields to the block that contains the

other macros, giving them access to the do_request() method.

The should_assign() method seems a bit complex, but it goes out of its

way to provide you nice feedback so when you’re writing the examples

first (as I trust you are), you’ll get a failure message like this:

expected: "the value returned by Project.all",

got: nil (using ==)

We exposed these macros to controller specs by extending all controller

example groups with the ControllerMacros module in the last line of the

configuration. If we didn’t want them in all controller specs, we could

also explicitly extend individual groups inline, like this:

describe ProjectsController do

extend ControllerMacros

...

At this point we’ve explored a number of ways to make RSpec code

examples more expressive, but all of these techniques apply only to the

input: the code we write and read in our examples. This is great if you’re

a developer, but part of RSpec’s value-add is its ability to customize

output for different audiences. We’ll explore how RSpec does this and

how we can customize it in the next section.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=189

CUSTOM FORMATTERS 190

15.5 Custom Formatters

RSpec uses message formatters to generate the output you see when

running a suite of specs. These formatters receive notification of events,

such as when an example group is about to be run, or an individual

example fails.

RSpec ships with a number of built-in formatters designed to gener-

ate plain text output, an all-purpose html formatter, and a TextMate-

specific html formatter as well. You’re probably already familiar with

the progress bar formatter, which is the default formatter when you

run the spec command with no options. Run spec --help to see a full

listing of all of the built-in formatters.

If none of the built-in formatters satisfy your specific reporting needs,

you can easily create a custom formatter. This can be very useful for

building out custom spec reports for co-workers or a client. And if you

happen to be an IDE developer, custom formatters are definitely your

friend.

In this section, we’ll review the APIs for the various parts of the puzzle

that RSpec uses to write all of its built-in formatters, and anybody can

use to write a custom formatter.

Formatter API

The simplest way to write a custom formatter is to subclass Spec::Runner::Formatter::BaseFormatter,

which implements all of the required methods as no-ops. This allows us

to implement only the methods we care about, and reduces the risk that

changes in future versions of RSpec will impact the formatter.

Here is a list of all the required methods as of this writing, but be sure

to look at the documentation for Spec::Runner::Formatter::BaseFormatter to

ensure that you have the latest information.

initialize(options, output) When formatters are initialized, they are

handed an options struct with colour and dry_run options to help

determine how to format output.

The output is STDOUT by default, but can be overridden on the com-

mand line to be a filename, in which case a File object is passed to

initialize().

To handle either possibility, RSpec’s built-in formatters write to

the output object with output << "text", which works for any IO

object.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=190

CUSTOM FORMATTERS 191

start(example_count) This is the first method that is called. exam-

ple_count is the total count of examples that will be run.

example_group_started(example_group_proxy) Called as an example

group is started. See Section 15.5, ExampleGroupProxy, on the fol-

lowing page for more about example_group_proxy. There is no cor-

responding example_group_finished message because we have not

found a use for one in any of RSpec’s built-in formatters.

example_started(example_proxy) Called as an example is started. See

below for more about the example_proxy.

example_pending(example_proxy, message) Called when an example

is pending. The example_proxy is the same object that was passed

to example_started(). The message is the message passed to the

pending method, or a default message generated by RSpec (see

Section 5.3, Pending, on page 80 for more information).

example_failed(example_proxy, counter, failure) Called when an exam-

ple fails. The example_proxy is the same object that was passed to

example_started(). The counter indicates the sequential number of

this failure within the current run. So if there are seven failures,

and this is the last, counter will be the number 7. See below for

more information about the failure object.

example_passed(example_proxy) Called when an example passes. The

example_proxy is the same object that was passed to example_started().

start_dump() Called after all of the code examples have been executed.

The next method to be called will be dump_failure() if there are any

failures.

dump_failure(counter, failure) Called once for each failure in a run.

counter is the sequential number of this failure, and is the same as

the counter passed to example_failed() for this example. See below

for more information about the failure object.

dump_summary(duration, example_count, failure_count, pending_count)

Called after any calls to dump_failure(). duration is the total time it

took to run the suite. example_count is the total number of exam-

ples that were run. failure_count is the number of examples that

failed. pending_count is the number of examples that are pending.

dump_pending() Called after dump_summary(), and is a trigger to out-

put messages about pending examples. It is up to the formatter

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=191

CUSTOM FORMATTERS 192

to collect information about pending examples and generate any

output at this point.

close() Called once at the very end of the run, signaling the formatter

to clean up any resources it still has open.

ExampleGroupProxy

An ExampleGroupProxy is a lightweight proxy for an example group. This

is the object sent to the example_group_started() method, and it carries

the following information that can be useful in formatters:

description This is the complete description string, built by concate-

nating the strings and objects passed to the describe() or context()

method, and all of its parents in nested groups. For example, this

code:

describe ParkingTicket do

context "on my windshield"

would produce “ParkingTicket” when starting the outer group, and

“ParkingTicket on my windshield” when starting the inner group.

nested_descriptions Similar to description, except the formatted strings

for each group are not concatenated. In the ParkingTicket example,

the nested_descriptions for the outer group would be ["ParkingTicket"],

and the inner group would get ["ParkingTicket","on my windshield"].

This is used by RSpec’s built-in nested formatter, which is invoked

with --format nested on the command line.

examples An array of ExampleProxy objects for all of the examples in

this group.

location The file and line number at which the proxied example group

was declared. This is extracted from caller, and is therefore for-

matted as an individual line in a backtrace.

ExampleProxy

An ExampleProxy is a lightweight proxy for an individual example. This is

the object sent to the example_started(), and then either example_passed(),

example_failed(), or example_pending().

Note that the same ExampleProxy object is passed to both example_started()

method and the appropriate method after the example is finished. This

lets the formatter map the beginning and end of an example using

object identity (equal?()). RSpec’s profile formatter, invoked with --format

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=192

CUSTOM FORMATTERS 193

profile, uses this feature to calculate the time it takes for each example

to run.

Each ExampleProxy carries the following information:

description The description string passed to the it() method or any of

its aliases. This is nil when the proxy is passed to example_started(),

but has a non-nil value when passed to the other example_xxx()

methods. The reason is that RSpec users can write examples like

this:

describe MyCustomFormatter do

it { should solve_all_my_reporting_needs }

end

In this case there is no string passed to the it() method, so the

example doesn’t know its own description until the solve_all_my_reporting_needs()

matcher generates it, which won’t happen until the example is

run.

location The file and line number at which the proxied example was

declared. This is extracted from caller, and is therefore formatted

as an individual line in a backtrace.

Failure

The example_failed() and dump_failure() methods are each sent a Failure

object, which contains the following information:

header Header messsage for reporting this failure, including the name

of the example and an indicator of the type of failure. FAILED

indicates a failed expectation. FIXED indicates a pending example

that passes, and no longer needs to be pending. RuntimeError

indicates that a RuntimeError occured.

exception This is the actual Exception object that was raised.

Invoking A Custom Formatter

Once we’ve put in all of the energy to write a formatter using the APIs

we’ve discussed, we’ll probably want to start using it! Invoking a custom

formatter couldn’t be much simpler. We just need to require the file in

which it is defined, and then add its class to the command line.

Let’s say we’ve got a PDF formatter that generates a PDF document

that we can easily ship around to colleagues. Here is the command

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=193

WHAT WE’VE LEARNED 194

we’d use, assuming that it is named PdfFormatter and defined in format-

ters/pdf_formatter.rb:

spec spec --require formatters/pdf_formatter --format PdfFormatter:report.pdf

The structure of the --format argument is FORMAT[:WHERE]. FORMAT can

be any of the built-in formatters, or the name of the class of a custom

formatter. WHERE is STDOUT by default, or a filename. Either way, that’s

what gets submitted to the initialize method of the formatter.

15.6 What We’ve Learned

In this chapter we explored the utilities and extension points that RSpec

provides to support extending RSpec to meet your specific needs. These

include:

• Global Configuration lets us assign before and after blocks to

every example group. We can also use it to add methods to exam-

ple groups by extending them with custom modules, and add meth-

ods to individual examples by including custom modules.

• Custom Example Group Classes provide a logical home for cus-

tom behaviour. They are ideal for libraries that want to ship with

spec’ing facilities for their end users.

• We can use Custom Matchers to build up a domain-specific DSL

for expressing code examples.

• Macros also support a domain-specific DSL, but with a differ-

ent flavor than the custom matchers. Because they generate code

themselves, we can also use them to express groups of expecta-

tions in a single command.

• Custom Formatters let us control the output that RSpec provides

so we can produce different spec reports for different purposes

and audiences.

In practice, we find that the global configuration, custom matchers

defined with the Matcher DSL, and macros tend to be the most common

ways that we extend RSpec. There are already numerous matcher and

macro libraries for RSpec that are targeted at Rails development. Cus-

tom formatters tend to be the domain of IDE developers that support

RSpec, like NetBeans and RubyMine.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=194

Chapter 16

Cucumber
Coming soon ...

Prepared exclusively for Simone Joswig

Part IV

Behaviour Driven Rails

196
Prepared exclusively for Simone Joswig

Chapter 17

BDD in Rails
Ruby on Rails lit the web development world on fire by putting devel-

oper happiness and productivity front and center. Concepts like con-

vention over configuration, REST, declarative software, and the Don’t

Repeat Yourself principle are first class citizens in Rails, and have had

a profound and widespread impact on the web developer community as

a whole.

In the context of this book, the single most important concept expressed

directly in Rails is that automated testing is a crucial component in the

development of web applications. Rails was the first web development

framework to ship with an integrated full-stack testing framework. This

lowered the barrier to entry for those new to testing and, in doing so,

raised the bar for the rest of us.

RSpec’s extension library for Rails, rspec-rails, extends the Rails testing

framework by offering separate classes for spec’ing Rails models, views,

controllers and even helpers, in complete isolation from one another. All

that isolation can be dangerous if not accompanied with some level of

automated integration testing to make sure all the pieces work together.

For that we use Cucumber and supporting tools like Webrat and Sele-

nium.

All of these tools are great additions to any web developer’s arsenal of

testing tools, but, in the end, tools are tools. While RSpec and Cucum-

ber are optimized for BDD, using them doesn’t automatically mean

you’re doing BDD.

In the chapters that follow, we’ll show you how to use rspec-rails in

conjunction with tools like Cucumber, Webrat, and Selenium, to drive

Prepared exclusively for Simone Joswig

TRADITIONAL RAILS DEVELOPMENT 198

application development from the Outside-In with a powerful BDD toolset

and, much more importantly, a BDD mindset.

So what does that mean? What is the BDD mindset? And how do we

apply it to developing Rails apps? To put this into some perspective,

let’s take a look at traditional Rails development.

17.1 Traditional Rails Development

Rails developers typically use an inside-out approach to developing

applications. You design the schema and implement models first, then

the controllers, and lastly the views and helpers.

This progression has you build things you think other parts of the sys-

tem are going to need before those other parts exist. This approach

moves quickly at first, but often leads to building things that won’t be

used in the way you imagined, or perhaps won’t get used at all. When

you realize that the models don’t really do what you need, you’ll need

to either revisit what you’ve already built or make do. At this juncture,

you might hear your conscience telling you to “do the simplest thing.”

The Illusion of “simple” with Inside-Out

by Zach Dennis

I once worked on an application that had to display events to a user.

Working inside-out, we had built several of the models that we felt

adequately represented the application, including some custom search

functionality that would find events based on a set of criteria from the

user. When we got to implementing the views we realized that we needed

to filter the list of events based on some additional criteria. Did the event

belong to the user or to a group the user belonged to? Was the user an

admin?

We had already set up the associations for events belonging to users and

groups. Rather than go back and change the custom search functionality,

it seemed simpler to take advantage of what we had already built. So

instead of refactoring the model to support the additional filtering, we

added those checks in the views. Afterwards we refactored the view,

extracting the checks to a method in a helper module, erroneously easing

our guilt over putting logic in a view. We felt good at the time about the

decision. We were being pragmatic and doing the “simplest thing.”

Over time, we were presented with similar situations and made similar

decisions. Before long the application had all of this “simple-ness” tucked

away in places where it was very difficult to re-use and work with. We did

end up needing to re-use some of this logic in other parts of the

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=198

OUTSIDE-IN RAILS DEVELOPMENT 199

application, but it wasn’t simple any longer. Now it felt like we had to

choose between the lesser of three evils: force some awkward way of

accessing the logic for re-use, duplicate the logic, or go back and perform

time-consuming surgery on the application to make it easier to work with.

Building from the models out to the views means writing code based

on what you think you’re going to need. Ironically, it’s when you focus

on the UI that you discover what is really needed from the models,

and at that point there’s already a bunch of supporting code developed,

refactored, and well tested—ready to be used.

It turns out that you can alleviate these issues and build what you need

rather than building what you think you need by working Outside-In.

17.2 Outside-In Rails Development

Outside-in Rails development is like standing the traditional inside-out

approach on its head. Instead of working from the models out to views,

you work from the views in toward the models.

This approach lets customer-defined acceptance criteria drive develop-

ment in a much more direct way. It puts you in a better position to

discover the objects and interfaces earlier on in the process and make

design decisions based on real need.

The BDD cycle with Rails is the same Outside-In process you’d use with

any other framework (or no framework), web, desktop, command line,

or even an API. The cycle depicted in Figure 17.1, on the following page

is the same cycle depicted in Figure 1.1, on page 19, but we’ve added

some detail to help you map it to Rails.

• Start with a scenario. Make sure you have a clear understanding

of the scenario and how it is expected to work, including how the

UI should support a user interacting with the app (see the sidebar

on page 201).

• Execute the scenario with Cucumber. This will show you which

steps are pending. When you first start out most, if not all of the

steps will be pending.

• Write a step definition for the first step. Execute the scenario with

Cucumber and watch it fail.

• Drive out the view implementation using the red/green/refactor

cycle with RSpec. You’ll discover any assigned instance variables,

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=199

OUTSIDE-IN RAILS DEVELOPMENT 200

greenrefactor

red

green

red

refactor

1

2

3

4

5

6

7

Cucumber

RSpec

1

2

Focus on one scenario

Write failing step definition

(drop down to RSpec)

3

4

5

Implement view

Refactor view

Write failing view spec

Repeat #3 - #5 for discovered
objects, ie: controllers, models

7 Refactor

(when step is passing)

6

(start with Cucumber)

Repeat #2 - #7
until Scenario

is passing

Repeat #1 - #7
when Scenario
is all passing

Figure 17.1: The BDD Cycle in Rails

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=200

OUTSIDE-IN RAILS DEVELOPMENT 201

Understanding application behaviour

How a user expects to interact with a webapp is going to influ-
ence the resulting implementation. This affects both client-side
and server-side code. Failing to take this into account can lead
to a design that supports the desired functionality, but with an
implementation that is poorly aligned with the behaviour.

Outside-in suggests that you focus first on the outermost point
of a scenario, the UI, and then work your way in. This involves
communicating with the customer using visual tools like white-
boards, wireframes, screen mockups, or other forms of visual
aide. And if there are designers on the team, these communi-
cations should definitely involve them.

BDD is about writing software that matters. And little matters
more to your customer than how people will interact with the
application. Understanding user interaction, and addressing
that early, will go a long way towards understanding the under-
lying behaviour of the app.

controllers, controller actions, and models that it will need in order

to do its job.

• Drive out the controller with RSpec, ensuring the proper instance

variables are assigned. With the controller in place you’ll know

about any additional objects, models and methods that it needs to

do its job.

• Drive out those objects and models with RSpec, ensuring they

provide the appropriate methods that you found are needed by

the view and the controller. This usually leads to generating the

required migrations for fields in the database.

• Once you have implemented all of the objects and methods that

you have discovered are needed, execute the scenario with Cucum-

ber again to make sure the step is satisfied.

Once the step is passing, move on to the next unimplemented step and

continue working outside-in. When a scenario is done, move on to the

next scenario or find the nearest customer and have them validate that

it’s working as it should—then move on to the next scenario.

This is outside-in Rails development—implementing a scenario from its

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=201

SETTING UP A RAILS PROJECT 202

outermost-point down, building what you discover is needed to make it

work.

Now that you have a high level view of the outside-in process in Rails,

let’s get started by setting up a Rails project with the necessary tools.

This will let us explore ground zero in the following chapters.

17.3 Setting up a Rails project

Setting up a Rails project for outside-in development is simply a mat-

ter of installing RSpec, Cucumber, rspec-rails, and Webrat. There are

however four different installation methods that you can choose from.

The easiest installation method is the system-wide gem installation. If

you’re interested in packaging a specific version of Cucumber, RSpec,

rspec-rails, or Webrat into your application then you’ll be interested in

the vendor/gems, vendor/plugins, and config.gem installation meth-

ods.

System-wide gems

Installing the necessary libraries and tools is as simple as installing an

everyday rubygem. When you’re working with the latest stable releases

this is a great route to go:

> sudo gem install cucumber rspec-rails webrat

RSpec is a dependency of rspec-rails, so when you install rspec-rails

you get RSpec for free.

Bundling in vendor/gems

Rails supports loading gems found in vendor/gems/ before loading system-

wide gems. After you’ve installed the system-wide gems you can unpack

them into vendor/gems/:

> cd RAILS_ROOT/vendor

> mkdir gems

> cd gems

> gem unpack cucumber

> gem unpack rspec

> gem unpack rspec-rails

> gem unpack webrat

This method allows you to store the gems your application relies on in

version control. It also makes application development and deployment

very simple since you don’t have to worry about installing every single

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=202

SETTING UP A RAILS PROJECT 203

gem required—they’re bundled with the app. The only time this doesn’t

work is when your app requires a platform-specific gem. In that case

you will have to install the gem so it compiles correctly for the target

architecture.

Bundling in vendor/plugins

Rails supports loading plugins found in vendor/plugins/ before loading

gems found in vendor/gems. This is a great way to stay on the edge of

development:

> cd RAILS_ROOT

> script/plugin install --force git://github.com/aslakhellesoy/cucumber.git

> script/plugin install --force git://github.com/dchelimsky/rspec.git

> script/plugin install --force git://github.com/dchelimsky/rspec-rails.git

> script/plugin install --force git://github.com/brynary/webrat.git

This method also allows you to store libraries your application relies on

in version control and it shares the same benefits of development and

deployment as the vendor/gems installation method.

Using Rails config.gem

To take advantage of Rails’ built-in gem management, we recommend

that you configure the gems in config/environments/test.rb: 1

config.gem 'rspec-rails', :lib => false

config.gem 'rspec', :lib => false

config.gem 'cucumber'

config.gem 'webrat'

Use lib => false for rspec and rspec-rails because even though we may

want rails’ gem configuration to help us with installing and bundling

gems, we want rspec-rails’ rake tasks to control when they are loaded.

After saving this file you should be able to perform any of the following

commands:

see what gems are required in the test environment

rake gems RAILS_ENV=test

install required gems to your system

[sudo] rake gems:install RAILS_ENV=test

unpack required gems from your system to the app's vendor/gems

1. rspec-rails and config.gem have had some conflicts in the past. If you run into any

trouble with the instructions here, be sure to check http://wiki.github.com/rspec/rspec for

the latest installation instructions.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://wiki.github.com/rspec/rspec
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=203

SETTING UP A RAILS PROJECT 204

[sudo] rake gems:unpack RAILS_ENV=test

unpack required dependencies for your app's gems

[sudo] rake gems:unpack:dependencies RAILS_ENV=test

A few things to note:

• Use sudo on *nix machines if you normally use sudo to install and

unpack gems.

• Put RAILS_ENV=test at the end of the line, especially if you’re using

sudo.

• The rake tasks installed by old versions of rspec-rails cause some

trouble in this process, so delete lib/tasks/rspec.rake before execut-

ing these commands if you’re upgrading.

Bootstrapping your app w/Cucumber and RSpec

Cucumber and RSpec both ship with a Rails generator in order to setup

a Rails application to use them. You’ll need to run these two commands

to finish bootstrapping your Rails app for development with Cucumber

and RSpec:

> script/generate cucumber

> script/generate rspec

We’ll explore the cucumber generator in the next chapter, Chapter 18,

Cucumber with Rails, on page 206. For now, let’s take a look at what

the rspec generator is doing.

$./script/generate rspec

create lib/tasks/rspec.rake

create script/autospec

create script/spec

create script/spec_server

create spec

create spec/rcov.opts

create spec/spec.opts

create spec/spec_helper.rb

Here’s a description of each file and directory that was generated:

• lib/tasks/rspec.rake: Adds a collection of rake spec tasks to your appli-

cation. These tasks offer various ways of running your specs. Run

rake -T spec to find out more about these tasks.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=204

WHAT WE JUST LEARNED 205

• script/autospec: A command that provides integration with autotest

in your Rails project. 2

• script/spec: A command to run spec files directly with the version

of rspec the Rails app was configured for, e.g. system-wide rspec

gem, a local rspec gem in vendor/gems, or rspec installed in ven-

dor/plugins.

• script/spec_server: A command that runs a server for running specs

more quickly in your Rails app.

• spec: The directory where you place specs for your Rails app.

• spec/rcov.opts: Add options to this file that you want rcov to run

with when running any of the rake spec tasks with rcov, e.g. rake

spec:rcov.

• spec/spec.opts: Add options to this file that you want rspec to uti-

lize when running any of the rake spec tasks.

• spec/spec_helper.rb: This file is used load and configure rspec. It is

also where you would require and configure any additional helpers

or tools that your project utilizes when running specs.

Now you and your project are ready for outside-in development.

17.4 What We Just Learned

So far we’ve explored what it means to do BDD in Rails using outside-

in development and we’ve set up a Rails project with the recommended

tools. In the next chapter, we’ll take a look at how Cucumber and Rails

can be used together to drive development from the outside. Turn the

page and let’s begin.

2. See Section 14.3, Autotest, on page 171 for more information on rspec and autotest

integration

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=205

Chapter 18

Cucumber with Rails
Cucumber was created to support collaboration between project stake-

holders and application developers, with the goal of developing a com-

mon understanding of requirements and providing a backdrop for dis-

cussion. The result is a set of feature files with automated scenarios

that application code must pass. Once they’re passing, they serve as

regression tests as the development continues.

These same benefits apply when using Cucumber with Rails. In this

chapter we’ll look at how Cucumber integrates with a Rails project.

We’ll explore the variety of approaches to setting up context, triggering

events and specifying outcomes as we describe the features of our web

application.

18.1 Working with Cucumber in Rails

Cucumber scenarios serve as a high level description of a Rails appli-

cation’s behaviour within your codebase. As such, they’ll replace Rails’

integration tests, and serve as the outer loop in the Outside-In devel-

opment cycle.

Like a good set of integration tests, they’ll give you tremendous con-

fidence to refactor your code and evolve the application in response

to changing requirements. In addition, they’ll document the system’s

behaviour and your progress in implementing it by connecting those

requirements directly to Ruby code.

As we saw in Chapter 17, BDD in Rails, on page 197, installing Cucum-

ber into a Rails app is simple. The last step of the installation process

is to run the generator included in Cucumber.

Prepared exclusively for Simone Joswig

WORKING WITH CUCUMBER IN RAILS 207

$./script/generate cucumber

create features/step_definitions

create features/step_definitions/webrat_steps.rb

create features/support

create features/support/env.rb

exists lib/tasks

create lib/tasks/cucumber.rake

create script/cucumber

Let’s take a look at these four directories and two files that were created:

• features/step_definitions: Clearly, this is where you’ll put step defini-

tions.

• features/step_definitions/webrat_steps.rb: You’ll put your commonly used

Webrat step definitions here. We’ll learn about this file in Chap-

ter 19, Simulating the Browser with Webrat, on page 220.

• features/support: This directory holds any Ruby code that needs to

be loaded to run your scenarios that are not step definitions, like

helper methods shared between step definitions.

• features/support/env.rb: Bootstraps and configures the Cucumber

runner environment.

• lib/tasks/cucumber.rake: Adds the rake features task which prepares

the test database and runs your application’s feature suite.

• script/cucumber: The command line feature runner.

That’s all you need to run Cucumber feature files for a Rails application.

As we progress, we’ll be adding files to three places (see Figure 18.1, on

the next page):

• RAILS_ROOT/features: This is where you’ll place each Cucumber *.fea-

ture file containing your scenarios.

• RAILS_ROOT/features/step_definitions: You’ll add step definitions to imple-

ment the plain text scenarios here. Use one file for each domain

concept, for example movie_steps.rb and checkout_steps.rb.

• RAILS_ROOT/features/support: This directory holds any supporting

code or modules you extract from your step definitions as you

refactor.

Now that we’re all set up, let’s take a look at the different approaches

to creating executable scenarios for a Rails application.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=207

WORKING WITH CUCUMBER IN RAILS 208

Figure 18.1: Rails Project Tree with Cucumber Features

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=208

STEP DEFINITION STYLES 209

18.2 Step Definition Styles

Step definitions connect the natural language steps from the scenarios

in a feature file with the Ruby code blocks that interact directly with

the system. Since Cucumber allows us to easily describe behaviour in

business terms, the steps shouldn’t express technical details. The same

Cucumber step of “Given I’m logged in as an administrator” could apply

to a CLI, client-side GUI, or Web-based application. It’s in the step def-

initions that the rubber meets the road and code is created to interact

with the application.

The first step of the Outside-In cycle is to produce a failing scenario,

and to do that we’ll need a step definition, but how should it be imple-

mented? Rails applications contain many layers, from the model and

the database all the way up to the web browser, and this leaves us with

options and choices in how step definitions interact with an application.

We want scenarios to exercise a vertical slice through all of our code,

but we also want them to run fast. The fastest scenarios are going

to bypass HTTP, routing, and controllers and just talk directly to the

models. The slowest ones are going to exercise everything through the

web browser, giving us the fullest coverage, the most confidence, and

the least desire to run them on a regular basis!

So what’s a pragmatic story teller to do? I’m going to put on my consul-

tant hat for a second and say “it depends.” When building step defini-

tions for a Rails application, we typically deal with three step definition

styles for interacting with a Web-based system in order to specify its

behaviour:

• Direct Model Access: Access the ActiveRecord models directly (like

model specs) while skipping the routing, controllers, and views.

This is the fastest but least integrated style. It deliberately avoids

the other layers of the Rails stack.

• Simulated Browser: Access the entire MVC stack using Webrat,

a DSL for interacting with web applications. This style provides a

reliable level of integration while remaining fast enough for general

use, but doesn’t exercise JavaScript at all.

• Automated Browser: Access the entire Rails MVC stack and a real

web browser by driving interactions with the Webrat API and its

support for piggy-backing on Selenium. This style is fully inte-

grated but can be slow to run and cumbersome to maintain.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=209

DIRECT MODEL ACCESS 210

Fast is better than slow, of course, and integrated is better than iso-

lated in order to provide confidence the app works in the hands of your

users once you ship it. When writing Cucumber scenarios, integration

and speed are opposing forces. This conundrum is illustrated in Fig-

ure 18.2, on the following page. The balance of these forces that feels

best will vary a bit from developer to developer, so I’ll share my own

preferences to serve as a starting point. It’s not the “one true way,” but

it’s based on my experience playing with a variety of approaches.

I use Direct Model Access in Givens to prepare the state of the system,

except for logging-in or other actions that set up browser session state.

Whens and Thens execute against the full Rails stack using Webrat

as a Simulated Browser. This provides confidence that all of the com-

ponent parts are working well together but still produces a suite that

can be executed relatively quickly and without depending on a real web

browser.

If there is any JavaScript or AJAX, I’ll add scenarios that use the Auto-

mated Browser approach in their Whens and Thens for the happy path

and critical less common paths. The added value we get from doing this

is exercising client side code, so when no client code is necessary, there

is no reason to use the browser.

Lastly, for features that produce many edge cases, it can be useful to

drive a few through the Rails stack and the rest using just Direct Model

Access for everything. This may seem more like a unit test, but keep in

mind that scenarios are about communication, not just coverage. We

want to make sure that we’re writing the right code. If the customer

asks for specific error messages depending on a variety of error condi-

tions, then it’s OK to go right to the model if that’s the source of the

message, as long as we have confidence that the relevant slice of the

full stack is getting sufficient coverage from our other scenarios.

In this chapter, we’ll start with the simplest style, Direct Model Access,

and walk through implementing a feature. Then we’ll explore using

Webrat for both the Simulated Browser and Automated Browser styles

in Chapter 19, Simulating the Browser with Webrat, on page 220.

18.3 Direct Model Access

The Direct Model Access style of step definitions is just like what you

might find in Rails unit tests or RSpec model specs. They execute

quickly and are immune to changes in the controller and view layers. In

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=210

DIRECT MODEL ACCESS 211

Simulated Browser

Automated Browser

Direct Model Access

Fast

Slow

Isolated

Integrated

Figure 18.2: Comparing step definition styles

fact, in this DMA-only example, we won’t even need to build a controller

or views to get our scenarios passing.

That speed and isolation comes at a price. DMA step definitions don’t

provide any assurance that the application actually works (unless your

users happen to fire up the application using script/console). They are

also unlikely to catch bugs that a good set of model specs wouldn’t have

already caught.

It’s not all bad, however. They still facilitate a good conversation between

the customer and the developers, and will catch regressions if the logic

inside the models is broken in the future. In this way, DMA step def-

initions are useful for exercising fine grained behaviours of a system,

when driving all of them through the full stack would be too cumber-

some.

To see this in action, let’s look at some scenarios for a movie box office

system. The customer wants the structured movie schedule data to be

distilled into the best human-readable one line showtime description

for display on a website. Create a feature file named showtime_descriptions.feature

and add the following text to it:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=211

DIRECT MODEL ACCESS 212

Cucumber::Rails::World

Cucumber::Rails::World is the primary building block of Cucum-
ber’s support for Rails. As the bridge between the two frame-
works, it provides the Rails integration testing methods within
each of your scenarios.

When Cucumber’s Rails support is loaded by requiring cucum-

ber/rails/world in features/support/env.rb, instances of Cucum-

ber::Rails::World are configured to be the World for each sce-
nario:

World do
Cucumber::Rails::World.new

end

Cucumber::Rails::World inherits Rails’ ActionCon-

troller::IntegrationTest, and makes surprisingly few modifications
to the superclass behaviour. Here’s how it’s defined inside
Cucumber:

class Cucumber::Rails::World < ActionController::IntegrationTest
«code»

end

Each scenario will run in a newly instantiated Cucum-

ber::Rails::World. This gives us access to all of the functionality
of Rails’ Integration tests and RSpec’s Rails-specific matchers,
including simulating requests to the application and specifying
behaviour with RSpec expectations.

In the default configuration, it will also cause each scenario to
run in an isolated DB transaction, just like RSpec code exam-
ples. You can disable this by removing the following line from
the RAILS_ROOT/features/support/env.rb generated by Cucumber:

Cucumber::Rails.use_transactional_fixtures

If you disable per-scenario transactions, you’ll have to worry
about records left over from one scenario affecting the results
of the next. This often leads to inadvertent and subtle order-
ing dependencies in your scenario build. For these reasons, we
strongly recommend using the transactional fixtures setting.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=212

DIRECT MODEL ACCESS 213

Download cucumber_rails/01/features/showtime_descriptions.feature

Feature: Showtime Descriptions

So that I can find movies that fit my schedule

As a movie goer

I want to see accurate and concise showtimes

Scenario: Show minutes for times not ending with 00

Given a movie

When I set the showtime to 2007-10-10 at 2:15pm

Then the showtime description should be "October 10, 2007 (2:15pm)"

Scenario: Hide minutes for times ending with 00

Given a movie

When I set the showtime to 2007-10-10 at 2:00pm

Then the showtime description should be "October 10, 2007 (2pm)"

If we ran that file using script/cucumber now, all the steps would be

pending:

Download cucumber_rails/01/out/01.all_pending

./script/cucumber features/showtime_descriptions.feature

Feature: Showtime Descriptions

So that I can find movies that fit my schedule

As a movie goer

I want to see accurate and concise showtimes

Scenario: Show minutes for times not ending with 00

Given a movie

When I set the showtime to 2007-10-10 at 2:15pm

Then the showtime description should be "October 10, 2007 (2:15pm)"

Scenario: Hide minutes for times ending with 00

Given a movie

When I set the showtime to 2007-10-10 at 2:00pm

Then the showtime description should be "October 10, 2007 (2pm)"

6 steps pending

You can use these snippets to implement pending steps:

Given /^a movie$/ do

end

When /^I set the showtime to 2007\-10\-10 at 2:15pm$/ do

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/cucumber_rails/01/features/showtime_descriptions.feature
http://media.pragprog.com/titles/achbd/code/cucumber_rails/01/out/01.all_pending
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=213

DIRECT MODEL ACCESS 214

Then /^the showtime description should be "October 10, 2007 \(2:15pm\)"$/ do

end

When /^I set the showtime to 2007\-10\-10 at 2:00pm$/ do

end

Then /^the showtime description should be "October 10, 2007 \(2pm\)"$/ do

end

Getting the First Scenario to Pass

Let’s focus on the step definitions needed for the first scenario. Using

the Direct Model Access style, it’s easy to fill in the step definitions with

the sort of code you might see in Rails’ model specs.1 We could put

them in features/step_definitions/showtime_steps.rb.

Download cucumber_rails/01/features/step_definitions/showtime_steps.rb

Given /^a movie$/ do

@movie = Movie.create!

end

When /^I set the showtime to 2007\-10\-10 at 2:15pm$/ do

@movie.update_attribute(:showtime_date, Date.parse("2007-10-10"))

@movie.update_attribute(:showtime_time, "2:15pm")

end

Then /^the showtime description should be "October 10, 2007 \(2:15pm\)"$/ do

@movie.showtime.should == "October 10, 2007 (2:15pm)"

end

Since Cucumber step definitions execute in the context of a Rails envi-

ronment, you can use any techniques that work in Rails unit tests or

RSpec model specs. That includes creating models in the database and

using RSpec’s Expectations API.2

Just as instance variables can be created in before(:each) blocks and

referenced in individual code examples, the @movie instance variable

created in the Given() step is available to all subsequent steps.

Let’s check how we’re doing. We can use Cucumber’s --scenario com-

mand line option to run the one scenario we’re focused on:3

1. Implementing Rails model specs with RSpec is covered in depth in the (as yet) unwrit-

ten chp.models.

2. RSpec’s mocking and stubbing API is not available, however.

3. The --scenario option was introduced in cucumber-0.1.9.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/cucumber_rails/01/features/step_definitions/showtime_steps.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=214

DIRECT MODEL ACCESS 215

Download cucumber_rails/01/out/02.failing

./script/cucumber features/showtime_descriptions.feature:7

Feature: Showtime Descriptions

So that I can find movies that fit my schedule

As a movie goer

I want to see accurate and concise showtimes

Scenario: Show minutes for times not ending with 00

Given a movie

uninitialized constant Movie (NameError)

/Library/Ruby/Gems/1.8/gems/activesupport-2.2.2/lib/active_support/ \

dependencies.rb:445:in `load_missing_constant'

/Library/Ruby/Gems/1.8/gems/activesupport-2.2.2/lib/active_support/ \

dependencies.rb:77:in `const_missing'

/Library/Ruby/Gems/1.8/gems/activesupport-2.2.2/lib/active_support/ \

dependencies.rb:89:in `const_missing'

./features/step_definitions/showtime_steps.rb:2:in `Given /^a movie$/'

features/showtime_descriptions.feature:9:in `Given a movie'

When I set the showtime to 2007-10-10 at 2:15pm

Then the showtime description should be "October 10, 2007 (2:15pm)"

1 steps failed

2 steps skipped

Now we’ve got a failing scenario that will drive adding functionality to

our application. The minimum amount of work to get the first scenario

passing would be adding a Movie model and a Movie#showtime method

to properly format the date and time. We’ll do just that.

Download cucumber_rails/02/app/models/movie.rb

class Movie < ActiveRecord::Base

def showtime

"#{formatted_date} (#{formatted_time})"

end

def formatted_date

showtime_date.strftime("%B %d, %Y")

end

def formatted_time

showtime_time.strftime("%l:%M%p").strip.downcase

end

end

Let’s check the results of running our feature file again:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/cucumber_rails/01/out/02.failing
http://media.pragprog.com/titles/achbd/code/cucumber_rails/02/app/models/movie.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=215

DIRECT MODEL ACCESS 216

Joe Asks. . .

Where does RSpec fit into this picture?

In this example, we go straight from a Cucumber scenario to
the Rails model code without any more granular code exam-
ples written in RSpec. This is really just to keep things simple and
focused on Cucumber for this chapter.

We have yet to introduce you to the other styles of step
definitions, or the Rails-specific RSpec contexts provided by
the spec-rails library. As you learn about them in the coming
chapters, you’ll begin to get a feel for how all these puzzle
pieces fit together, and how to balance the different tools and
approaches.

./script/cucumber features/showtime_descriptions.feature:7

Feature: Showtime Descriptions

So that I can find movies that fit my schedule

As a movie goer

I want to see accurate and concise showtimes

Scenario: Show minutes for times not ending with 00

Given a movie

When I set the showtime to 2007-10-10 at 2:15pm

Then the showtime description should be "October 10, 2007 (2:15pm)"

3 steps passed

That’s looking much better, isn’t it? This would probably be a good time

to commit to your version control system. Working scenario by scenario

like this, we get the benefit of ensuring we don’t break previously pass-

ing scenarios as we continue to refactor and add behaviour.

Completing the Feature

Looking at the second scenario, the step definitions we need are similar

to the two we’ve already implemented. Astute readers might be wonder-

ing if we can use Cucumbers’s parameterized step definitions feature

that you read about in the (as yet) unwritten chp.cucumber. They’d be

right.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=216

DIRECT MODEL ACCESS 217

Using the power of regular expressions we can make a When() step

definition that works for arbitrary times, and a Then() step definition

that works for arbitrary schedules:

Download cucumber_rails/02/features/step_definitions/02/showtime_steps.rb

Given /^a movie$/ do

@movie = Movie.create!

end

When /^I set the showtime to 2007\-10\-10 at (.+)$/ do |time|

@movie.update_attribute(:showtime_date, Date.parse("2007-10-10"))

@movie.update_attribute(:showtime_time, time)

end

Then /^the showtime description should be "(.+)"$/ do |description|

@movie.showtime.should == description

end

We can replace our old When() and Then() step definitions with these

new parameterized versions, and the result of running the feature file

won’t change. They’ll also make it easier to add many scenarios about

movies throughout the life of the application. As you build up a suite

of reusable step definitions for your applications, you’ll often find the

number of new step definitions you have to write for new functionality

to be surprisingly small.

With our step definitions implemented, we can turn our attention to

getting the last scenario to pass. Before we implement the application

code, let’s check that we’re seeing the failure we expect:

Download cucumber_rails/02/out/02.one_failing

./script/cucumber features/showtime_descriptions.feature

Feature: Showtime Descriptions

So that I can find movies that fit my schedule

As a movie goer

I want to see accurate and concise showtimes

Scenario: Show minutes for times not ending with 00

Given a movie

When I set the showtime to 2007-10-10 at 2:15pm

Then the showtime description should be "October 10, 2007 (2:15pm)"

Scenario: Hide minutes for times ending with 00

Given a movie

When I set the showtime to 2007-10-10 at 2:00pm

Then the showtime description should be "October 10, 2007 (2pm)"

expected: "October 10, 2007 (2pm)",

got: "October 10, 2007 (2:00pm)" (using ==) \

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/cucumber_rails/02/features/step_definitions/02/showtime_steps.rb
http://media.pragprog.com/titles/achbd/code/cucumber_rails/02/out/02.one_failing
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=217

DIRECT MODEL ACCESS 218

(Spec::Expectations::ExpectationNotMetError)

./features/step_definitions/02/showtime_steps.rb:11:in \

`Then /^the showtime description should be "(.+)"$/'

features/showtime_descriptions.feature:17:in \

`Then the showtime description should be "October 10, 2007 (2pm)"'

5 steps passed

1 steps failed

Now we can go back to our Movie model and enhance the logic of the

formatted_time() method.

Download cucumber_rails/03/app/models/movie.rb

def formatted_time

format_string = showtime_time.min.zero? ? "%l%p" : "%l:%M%p"

showtime_time.strftime(format_string).strip.downcase

end

That should be enough to get us to green:

Download cucumber_rails/03/out/01.done

./script/cucumber features/showtime_descriptions.feature

Feature: Showtime Descriptions

So that I can find movies that fit my schedule

As a movie goer

I want to see accurate and concise showtimes

Scenario: Show minutes for times not ending with 00

Given a movie

When I set the showtime to 2007-10-10 at 2:15pm

Then the showtime description should be "October 10, 2007 (2:15pm)"

Scenario: Hide minutes for times ending with 00

Given a movie

When I set the showtime to 2007-10-10 at 2:00pm

Then the showtime description should be "October 10, 2007 (2pm)"

6 steps passed

Success! We’ve completed our work on the “Showtime Descriptions” fea-

ture. Our passing scenarios tell us that we’ve written the right code,

and that we’re done. Before we leap into the next chapter, let’s take a

second to consider what we learned.

Like most important development decisions, when choosing a step def-

inition style there are opposing forces on each side that need to be

considered and balanced. Direct Model Access step definitions offer the

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/cucumber_rails/03/app/models/movie.rb
http://media.pragprog.com/titles/achbd/code/cucumber_rails/03/out/01.done
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=218

DIRECT MODEL ACCESS 219

speed and flexibility of model specs at the cost of reduced confidence

that the application is working for its users.

For most situations, it makes more sense to create a more integrated

set of step definitions that ensure the Models, Views and Controllers are

working together correctly, even though they will execute a bit slower.

Next we’ll take a look at how we can use Webrat to implement either

the Simulated Browser or Automated Browser styles to do just that.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=219

Chapter 19

Simulating the Browser with
Webrat

Even though we call Rails an MVC framework, there are really more

than three layers in a Rails app. In addition to model, view, and con-

troller, we’ve also got a routing layer, a persistence layer (the class

methods in Rails models) and a database, and we want to ensure that

all of these layers work well together.

In the last chapter, we introduced Direct Model Access step definitions

and used them to implement Givens, Whens and Thens. This approach

can be useful to specify fine-grained Model behaviours, but running

those scenarios doesn’t give us any confidence that the different layers

of our application are working well together.

In practice, in the rare cases we use DMA-only scenarios, it’s to aug-

ment a strong backbone of coverage established by Simulated Browser

scenarios exercising the full Rails stack. We covered it first because it’s

the simplest style, but the primary role of DMA step definitions is to

help keep our Simulated and Automated Browser scenarios focused by

quickly setting up repeated database state in Givens, as we’ll see later

in this chapter.

We consider the Simulated Browser style to be the default approach

for implementing Whens and Thens for a Rails app because it strikes

a good balance between speed and integration. We can count on the

software actually working in the hands of our end users when we ship,

and we can execute the scenarios relatively quickly as the requirements

and code evolve.

Prepared exclusively for Simone Joswig

WRITING SIMULATED BROWSER STEP DEFINITIONS 221

If you’re building an application without much JavaScript, the Simu-

lated Browser (combined with DMA for Givens) is likely all you’ll need.

It’s a fast, dependable alternative to in-browser testing tools like Sele-

nium and Watir. Even when JavaScript is important to the user expe-

rience, we like to start with a set of Simulated Browser scenarios, and

then add Automated Browser scenarios (which we’ll cover in the (as yet)

unwritten chp.automatedBrowser) to drive client side interactions.

If you’ve ever written a Rails integration test, you’ve probably used

the Simulated Browser style of testing. In that context, methods like

get_via_redirect() and post_via_redirect() build confidence because they

simulate requests that exercise the full stack, but they don’t make it

easy to express user behaviours clearly. Throughout this chapter we’ll

explore how Webrat builds on this approach to help us bridge the last

mile between page loads and form submissions, and the behaviour our

applications provide to the real people whose lives they touch.

19.1 Writing Simulated Browser Step Definitions

Let’s walk through implementing a few step definitions for a simple

scenario using the Simulated Browser style. We’ll be building on the

web-based movie box office system from last chapter. The next require-

ment is that visitors should be able to browse movies by genre. Start by

creating a file named browse_movies.feature in the features directory with

the following content:

Download simulated_browser/01/features/browse_movies.feature

Feature: Browse Movies

So that I quickly can find movies of interest

As a movie goer

I want to browse movies by genres

Scenario: Add movie to genre

Given a genre named Comedy

When I create a movie Caddyshack in the Comedy genre

Then Caddyshack should be in the Comedy genre

As usual, we’ll begin by running the file with Cucumber to point us at

which step definitions we need to implement:

Download simulated_browser/01/out/01.all_pending

./script/cucumber features/browse_movies.feature

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/simulated_browser/01/features/browse_movies.feature
http://media.pragprog.com/titles/achbd/code/simulated_browser/01/out/01.all_pending
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=221

WRITING SIMULATED BROWSER STEP DEFINITIONS 222

Feature: Browse Movies

So that I quickly can find movies of interest

As a movie goer

I want to browse movies by genres

Scenario: Add movie to genre

Given a genre named Comedy

When I create a movie Caddyshack in the Comedy genre

Then Caddyshack should be in the Comedy genre

1 scenario

3 undefined steps

You can implement step definitions for missing steps with these snippets:

Given /^a genre named Comedy$/ do

pending

end

When /^I create a movie Caddyshack in the Comedy genre$/ do

pending

end

Then /^Caddyshack should be in the Comedy genre$/ do

pending

end

The “Given a genre named Comedy” step could be implemented using

either DMA or the Simulated Browser style. Using a Simulated Browser

would ensure that the Views and Controllers used to create Genres are

working with the models properly. DMA won’t go through those layers

of the stack, but provides a bit more convenience, simplicity and speed.

So which style should we use? Let’s imagine we already have scenarios

that thoroughly exercise the interface to manage Genres using the Sim-

ulated Browser style in a manage_genres.feature file. With that coverage

already in place, we can benefit from the DMA style without reduc-

ing our confidence in the application. As we add features throughout

the evolution of an application, we see a pattern emerge in which we

implement DMA Givens for a Model that has its own Simulated Browser

scenarios elsewhere in the Cucumber suite. Here’s what it might look

like in this case:

Download simulated_browser/01/features/step_definitions/genre_steps.rb

Given /^a genre named Comedy$/ do

@comedy = Genre.create!(:name => "Comedy")

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/simulated_browser/01/features/step_definitions/genre_steps.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=222

WRITING SIMULATED BROWSER STEP DEFINITIONS 223

The step passes because the Genre model and table already exist. Run-

ning the scenario again shows us that our When is the next pending

step to turn our attention to:

Download simulated_browser/01/out/02.one_passing

./script/cucumber features/browse_movies.feature

Feature: Browse Movies

So that I quickly can find movies of interest

As a movie goer

I want to browse movies by genres

Scenario: Add movie to genre

Given a genre named Comedy

When I create a movie Caddyshack in the Comedy genre

Then Caddyshack should be in the Comedy genre

1 scenario

2 undefined steps

1 passed step

You can implement step definitions for missing steps with these snippets:

When /^I create a movie Caddyshack in the Comedy genre$/ do

pending

end

Then /^Caddyshack should be in the Comedy genre$/ do

pending

end

The wireframe for the Add Movie screen shown in Figure 19.1, on

the following page, shows that a user will need to provide a movie’s

title, release year, and genres to add it to the system. Since our When

step specifies the main action of the scenario, we’ll use the Simulated

Browser to drive this interaction through the full Rails stack.

Before we look at how Webrat can help us with this, let’s see what Rails

provides out-of-the-box. If you were to implement the “When I create a

movie Caddyshack in the Comedy genre” step with the Rails integration

testing API, you might end up with something like the following:

Download simulated_browser/misc/features/step_definitions/movie_steps.rb

When /^I create a movie Caddyshack in the Comedy genre$/ do

get_via_redirect movies_path

assert_select "a[href=?]", new_movie_path, "Add Movie"

get_via_redirect new_movie_path

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/simulated_browser/01/out/02.one_passing
http://media.pragprog.com/titles/achbd/code/simulated_browser/misc/features/step_definitions/movie_steps.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=223

WRITING SIMULATED BROWSER STEP DEFINITIONS 224

Figure 19.1: Creating a Movie with a form

assert_select "form[action=?][method=post]", movies_path do

assert_select "input[name=?][type=text]", "movie[title]"

assert_select "select[name=?]", "movie[release_year]"

assert_select "input[name=?][type=checkbox][value=?]", "genres[]", @comedy.id

end

post_via_redirect movies_path, :genres => [@comedy.id], :movie =>

{ :title => "Caddyshack", :release_year => "1980" }

assert_response :success

end

This gets the job done, but a lot of implementation details like HTTP

methods, form input names, and URLs have crept up into our step

definition. These sorts of details will change through the lifespan of

an application and can make scenarios quite brittle. We could mitigate

some of that risk by extracting helper methods for specifying forms and

posts that might appear in multiple scenarios, but that still leaves a

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=224

WRITING SIMULATED BROWSER STEP DEFINITIONS 225

significant issue.

With the generated HTML being specified separately from the post, it is

entirely possible to assert_select "input[name=?]", "movie[name]" and then

post to movies_path, :movie => { :title => "Caddyshack"}. This specifies that

the form displays an input for movie[name], but then the step posts

movie[title]. If the form is incorrectly displaying a movie[name] field, this

step will pass, but the application will not work correctly.

Luckily, there’s a better way that makes the Simulated Browser approach

not only viable but enjoyable to work with.

Like the Rails integration testing API, Webrat works like a fast, invisible

browser. It builds on that functionality by providing a simple, expres-

sive DSL for manipulating a web application. We can use Webrat to

describe the same interaction at a high level, using language that is

similar to how you might explain using the application to a non-technical

friend:

Download simulated_browser/01/features/step_definitions/movie_steps.rb

When /^I create a movie Caddyshack in the Comedy genre$/ do

visit movies_path

click_link "Add Movie"

fill_in "Title", :with => "Caddyshack"

select "1980", :from => "Release Year"

check "Comedy"

click_button "Save"

end

That certainly feels a lot better than the first version. Notice how Webrat

let us focus on exactly the details an end user would experience and

didn’t force us to worry about how it will be built. The sole implementa-

tion detail remaining is using the movies_path() route as an entry point.

In addition to being more expressive, Webrat also delivers on the promise

of catching regressions without the false positives described earlier.

Don’t worry about the details of how this works just yet. That will

become clear throughout the rest of this chapter.

By re-running the scenario with Cucumber, it will show us where to

start implementing:

Download simulated_browser/01/out/03.one_failing

./script/cucumber features/browse_movies.feature

Feature: Browse Movies

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/simulated_browser/01/features/step_definitions/movie_steps.rb
http://media.pragprog.com/titles/achbd/code/simulated_browser/01/out/03.one_failing
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=225

WRITING SIMULATED BROWSER STEP DEFINITIONS 226

So that I quickly can find movies of interest

As a movie goer

I want to browse movies by genres

Scenario: Add movie to genre

Given a genre named Comedy

When I create a movie Caddyshack in the Comedy genre

undefined method `movies_path' for #<ActionController::Integration::Session:0x...*TRUNC*
/Users/bhelmkamp/p/book/Book/code/simulated_browser/01/vendor/plugins/rspec/li...*TRUNC*
./features/step_definitions/movie_steps.rb:2:in `/^I create a movie Caddyshack...*TRUNC*
features/browse_movies.feature:10:in `When I create a movie Caddyshack in the ...*TRUNC*

Then Caddyshack should be in the Comedy genre

1 scenario

1 failed step

1 undefined step

1 passed step

You can implement step definitions for missing steps with these snippets:

Then /^Caddyshack should be in the Comedy genre$/ do

pending

end

At this point, the outside-in development process described in Sec-

tion 17.2, Outside-In Rails Development, on page 199 would lead us

through the steps necessary to get that feature completed. The upcom-

ing chapters dive into the specifics of spec’ing views, controllers and

models, so to keep this example focused on the Simulated Browser

style, we’ll leave that as an exercise for you.

To get this step passing we’ll need a MoviesController and an app/views/movies/new.html.erb

view that displays a form with a Title text field, a Release Year drop-

down, and a list of checkboxes for each genre. Once we’ve built those,

re-running our scenario will show us we’ve got one step left:

Download simulated_browser/02/out/01.one_pending

./script/cucumber features/browse_movies.feature

Feature: Browse Movies

So that I quickly can find movies of interest

As a movie goer

I want to browse movies by genres

Scenario: Add movie to genre

Given a genre named Comedy

When I create a movie Caddyshack in the Comedy genre

Then Caddyshack should be in the Comedy genre

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/simulated_browser/02/out/01.one_pending
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=226

WRITING SIMULATED BROWSER STEP DEFINITIONS 227

1 scenario

1 undefined step

2 passed steps

You can implement step definitions for missing steps with these snippets:

Then /^Caddyshack should be in the Comedy genre$/ do

pending

end

To browse movies by genre, a site visitor would click over to the Comedy

page, which displays one movie entitled Caddyshack. The Webrat step

definition for our Then reflects this:

Download simulated_browser/03/features/step_definitions/movie_steps.rb

Then /^Caddyshack should be in the Comedy genre$/ do

visit genres_path

click_link "Comedy"

response.should contain("1 movie")

response.should contain("Caddyshack")

end

To get this to pass, we need to make sure we’ve got a GenresController

with an index and a “show” view displaying a list of movies in the genre.

Also, we’ll need to go back to the MoviesController and get it to collaborate

with the models to persist the movie and its genres correctly.

Again, in practice we’d drop down to isolated code examples with RSpec

to drive the design and implementation of our objects. A few cycles of

Red, Green, Refactor later and we should be all set:

Download simulated_browser/03/out/01.all_passing

./script/cucumber features/browse_movies.feature

Feature: Browse Movies

So that I quickly can find movies of interest

As a movie goer

I want to browse movies by genres

Scenario: Add movie to genre

Given a genre named Comedy

Could not find table 'genres' (ActiveRecord::StatementInvalid)

./features/step_definitions/genre_steps.rb:2:in `/^a genre named Comedy$/'

features/browse_movies.feature:9:in `Given a genre named Comedy'

When I create a movie Caddyshack in the Comedy genre

Then Caddyshack should be in the Comedy genre

1 scenario

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/simulated_browser/03/features/step_definitions/movie_steps.rb
http://media.pragprog.com/titles/achbd/code/simulated_browser/03/out/01.all_passing
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=227

NAVIGATING TO PAGES 228

1 failed step

2 skipped steps

Great. The passing scenario is telling us we’re done. By leveraging the

DMA style for Givens and combining it with the Simulated Browser style

with Webrat for Whens and Thens, we’ve reached a good balance of

expressive specification, speed and coverage. We can read the scenario

to understand what we should expect from the application, and we can

be quite confident that it will work for our users when we ship it.

Throughout the rest of the chapter, we’ll dive into the details of Webrat’s

features and how they work. Let’s start by looking at how Webrat lets

you navigate from page to page in your application.

19.2 Navigating to Pages

Just as a user can’t click any links or submit any forms until he has

typed a URL into his browser’s address bar and requested a web page,

Webrat can’t manipulate a page until you’ve given it a place to start.

The visit() method lets you open a page of your application.

Inside each scenario, visit() must be called before any other Webrat

methods. Usually you’ll call it with a routing helper, like we did in our

When step definition from the previous section:

When /^I create a movie Caddyshack in the Comedy genre$/ do

visit movies_path

...

end

Behind the scenes, Webrat leverages Rails’ integration testing function-

ality to simulate GET requests, and layers browser-like behaviour on

top. Like other Webrat methods that issue requests, it looks at the

response code returned to figure out what to do next:

Successful (200-299) or Bad Request (400-499) Webrat stores the response

so that subsequent methods can fill out forms, click links, or

inspect its content.

Redirection (300-399) If the redirect is to a URL within the domain of

the application, Webrat issues a new request for the destination

specified by the redirect, preserving HTTP headers and including

a proper Location header. If the redirect is external, Webrat saves

it as the response for later inspection but won’t follow it.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=228

NAVIGATING TO PAGES 229

Server Error (500-599) Webrat raises a Webrat::PageLoadError. If you

want to specify that making a request produces an error, you can

use RSpec’s raise_error() to catch it.

Clicking links

Once you’ve opened a page of your application using visit(), you’ll often

want to navigate to other pages. Rather than using visit() to load each

URL in succession, it’s convenient to simulate clicking links to jump

from page to page.

click_link() lets you identify a link by its text and follows it by making

a request for the URL it points to. To navigate to the URL in the href=,

wherever that may be, of a link with the text “Comedy” we wrote:

Then /^Caddyshack should be in the Comedy genre$/ do

...

click_link "Comedy"

...

end

click_link() can lead to a more natural flow in your step definitions and

has the advantage that your step definitions are less bound to your

routing scheme. On the other hand, each page load takes a little bit

of time, so to keep your scenarios running quickly you’ll want to avoid

navigating through many pages of the site that aren’t directly related

to what you’re testing. Instead, you could pick an entry point for visit()

closer to the area of the application you’re concerned with.

In addition to clicking links based on the text between the <a> tags,

Webrat can locate links by their id= and title= values. For example, if we

have the following HTML:

Back to homepage

Then the following step definitions would all be equivalent:

When /^I click to go back to the homepage$/ do

Clicking the link by its title

click_link "Example.com Home"

end

When /^I click to go back to the homepage$/ do

Clicking the link by its id

click_link "home_link"

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=229

MANIPULATING FORMS 230

When /^I click to go back to the homepage$/ do

Clicking the link by its text

click_link "Back to homepage"

end

click_link() has rudimentary support for handling JavaScript links gener-

ated by Rails’ link_to() for non-GET HTTP requests. Since it can’t actually

run any JavaScript, it relies on matching the onclick= value with regu-

lar expressions. This functionality, though limited, can be useful when

dealing with RESTful Rails applications that aren’t implemented with

obtrusive JavaScript techniques.

Let’s say the box office application requires that a moderator approves

movie listings before they are visible on the site. Here’s how you might

express that with Webrat:

When /^I approve the listing$/ do

click_link "Approve"

end

And here’s the likely implementation:

<%= link_to "Approve", approve_movie_path(movie), :method => :put %>

When clicked, the link would generate a PUT request to the approve_movie_path.

You can disable this functionality by passing the :javascript => false option

to click_link():

When /^I approve the listing$/ do

click_link "Approve", :javascript => false

end

Instead of sending a PUT request, this tells Webrat to issue a GET request

as if the JavaScript were not present. This can be useful when you want

to specify the app works correctly for users without JavaScript enabled.

Now that we’re comfortable navigating to pages within our application,

we can take a look at how to use Webrat to submit forms.

19.3 Manipulating Forms

Once we’ve reached a page of interest, we’ll want to trigger actions

before we can specify outcomes. In the context of a web-based appli-

cation, that usually translates to filling out and submitting forms. Let’s

take a look at Webrat’s methods to do that. They’ll serve as the bread

and butter of most of our When step definitions.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=230

MANIPULATING FORMS 231

webrat_steps.rb

You might be looking at the step definitions used throughout this
chapter and wondering if you’ll be forced to write step defini-
tions for every When and Then step in each of your app’s sce-
narios. After all, maintaining separate step definitions for both
“When I click the Save button” and “When I click the Delete
button” (and more) would get tedious pretty quickly.

Fortunately, Cucumber has just the feature to help us out of this:
parameterized step definitions. Instead of maintaining a step
definition for each button, we can write one that’s reusable by
wrapping the Webrat API:

When /^I click the "(.+)" button$/ do |button_text|
click_button button_text

end

In fact, Cucumber ships with a bunch of these sort of step def-
initions in a webrat_steps.rb file. It was added to your project’s
step_definitions directory when you ran the Cucumber genera-
tor.

Be sure to take a look at what’s in there. It can save you quite
a bit of time as you’re implementing new scenarios.

fill_in()

You’ll use fill_in() to type text into text fields, password fields, and <textarea>s.

We saw an example of this in the When step definition of our box office

example:

When /^I create a movie Caddyshack in the Comedy genre$/ do

...

fill_in "Title", :with => "Caddyshack"

...

end

fill_in() supports referencing form fields by id=, name= and <label> text.

Therefore, if we’ve got a conventional Rails form with proper label tags

like this:

<dl>

<dt>

<label for="movie_title">Title</label>

</dt>

<dd>

<input type="text" name="movie[title]" id="movie_title" />

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=231

MANIPULATING FORMS 232

</dd>

</dl>

Then all of the following would be functionally equivalent:

Line 1 When /^I fill in the movie title Caddyshack$/ do

- # using the field's label's text
- fills_in "Title", :with => "Caddyshack"
- end

5

- When /^I fill in the movie title Caddyshack$/ do

- # using the field's id
- fills_in "movie_title", :with => "Caddyshack"
- end

10

- When /^I fill in the movie title Caddyshack$/ do

- # using the field's name
- fills_in "movie[title]", :with => "Caddyshack"
- end

In practice, referencing fields by label text is preferred. That way we can

avoid coupling our step definitions to class and field names, which are

more likely to change as we evolve the application. In the above exam-

ple, if we renamed the Movie class to Film, we’d have to change line 8

which uses the field id= and line 13 which uses the field name=, but line

3 would continue to work just fine. Unless otherwise noted, Webrat’s

other form manipulation methods support targeting fields using these

three strategies.

Beyond making your step definitions easier to write and maintain, pro-

viding active form field labels is a good habit to get into for accessibility

and usability.

check() and uncheck()

check() lets you click a checkbox which was not checked by default or

had been previously unchecked. Here’s an example:

When /^I create a movie Caddyshack in the Comedy genre$/ do

...

check "Comedy"

...

end

To uncheck a checkbox that was checked by default or has been previ-

ously checked, you’d write:

When /^I uncheck Save as draft$/ do

uncheck "Save as draft"

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=232

MANIPULATING FORMS 233

choose()

You’ll use choose() to manipulate radio form fields. Just like a browser

with a GUI, Webrat ensures only one radio button of a given group is

checked at a time.

Let’s say we wanted to select “Premium" from a list of plan levels on a

signup page. You might write:

When /^I choose to create a Premium plan$/ do

choose "Premium"

end

select()

You’ll use select() to pick options from select drop-down boxes.

When /^I create a movie Caddyshack in the Comedy genre$/ do

...

select "1980"

...

end

By default, Webrat will find the first option on the page that matches

the text. This is usually fine. If you’d like to be more specific, or you

have multiple selects with overlapping options, you can provide the

:from option. Then, Webrat will only look for the option inside selects

matching the label, name or id. For example:

When /^I create a movie Caddyshack in the Comedy genre$/ do

...

select "1980", :from => "Release Year"

...

end

select_date(), select_time() and select_datetime()

When rendering a form, Rails typically exposes date and time values

as a series of <select> fields. Each individual select doesn’t get its own

<label> so filling in a date using Webrat’s select() method is a bit cum-

bersome:

When /^I select October 1, 1984 as my birthday$/ do

select "October", :from => "birthday_2i"

select "1", :from => "birthday_3i"

select "1984", :from => "birthday_1i"

end

To ease this pain, Webrat now supports filling out conventional Rails

date and time fields with the select_date(), select_time() and select_datetime()

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=233

MANIPULATING FORMS 234

methods. They act like a thin layer on top of select() to hide away the

Rails-specific implementation details. Here’s how you might use them:

When /^I select April 26, 1982$/ do

Select the month, day and year for the given date

select_date Date.parse("April 26, 1982")

end

When /^I select 3:30pm$/ do

Select the hour and minute for the given time

select_time Time.parse("3:30PM")

end

When /^I select January 23, 2004 10:30am$/ do

Select the month, day, year, hour and minute for the given time

select_datetime Time.parse("January 23, 2004 10:30AM")

end

All three of the methods also support Strings instead of Date or Time

objects, in which case they’ll do the required parsing internally.

Unlike select(), they don’t support the :from option because no single

<label>, input name= or id= could identify the different <select> fields

that need to be manipulated. Instead, to help when there are multiple

date or time fields on the same page, they support an :id_prefix option

used to specify the attribute name:

When /^I set the start time to 1pm$/ do

select_time Time.parse("1:00PM"), :id_prefix => "start_time"

end

When /^I set the end time to 3:30pm$/ do

select_time Time.parse("3:30PM"), :id_prefix => "end_time"

end

attach_file()

To simulate file uploads, Webrat provides the attach_file() method. Instead

of passing a file field’s value as a string, it stores an ActionController::TestUploadedFile

in the params hash that acts like a Tempfile object a controller would

normally receive during a multipart request.

When you use it, you’ll want to save the fixture file to be uploaded some-

where in your app’s source code. We usually put these in spec/fixtures.

Here’s how you could implement a step definition for uploading a photo:

When /^I attach my Vacation photo$/ do

attach_file "Photo", Rails.root.join("spec", "fixtures", "vacation.jpg")

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=234

MANIPULATING FORMS 235

By default, Rails’ TestUploadedFile uses the text/plainMIME type. When

that’s not right, you can pass in a specific MIME type as a third param-

eter to attach_file():

When /^I attach my Vacation photo$/ do

attach_file "Photo", Rails.root.join("spec", "fixtures", "vacation.jpg"), "image/j...*TRUNC*
end

set_hidden_field()

Occasionally, it can be useful to manipulate the value of a hidden form

field when using the Simulated Browser approach. The fill_in() method,

like an app’s real users, will never manipulate a hidden field, so Webrat

provides a set_hidden_field() specifically for this purpose:

When /^I select Bob from the contact list dialog$/ do

set_hidden_field "user_id", @bob.id

end

Use this method with caution. It’s interacting with the application in

a different way than any end user actually would, so not all of the

integration confidence normally associated with the Simulate Browser

style applies, but it can help in a pinch.

click_button()

After you’ve filled out your fields using the above methods, you’ll submit

the form. If there’s only one submit button on the page, you can simply

use:

When /^I click the button$/ do

click_button

end

If you’d like to be a bit more specific or there is more than one button

on the page, click_button() supports specifying the button’s value=, id=

or name=. Let’s say you have the following HTML on your page:

<input type="submit" id="save_button" name="save" value="Apply Changes" />

There are three ways you could click it using the Webrat API:

When /^I click the button$/ do

Clicking a button by id

click_button "save_button"

end

When /^I click the button$/ do

Clicking a button by the name attribute

click_button "save"

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=235

SPECIFYING OUTCOMES WITH VIEW MATCHERS 236

When /^I click the button$/ do

Clicking a button by its text (value attribute)

click_button "Apply Changes"

end

Just like when navigating from page to page, when Webrat submits a

form it will automatically follow any redirects, and ensure the final page

did not return a server error. There’s no need to check the response

code of the request by hand. The returned page is stored, ready to be

manipulated or inspected by subsequent Webrat methods.

submit_form()

Occasionally, you might need to submit a form that doesn’t have a sub-

mit button. The most common example is a select field that is enhanced

with JavaScript to auto-submit its containing form. Webrat provides the

submit_form() method to help in these situations. To use it, you’ll need

to specify the <form>’s id= value:

When /^I submit the quick navigation form$/ do

submit_form "quick_nav"

end

reload()

Real browsers provide a reload button to send another request for the

current page to the server. Webrat provides the reload() method to sim-

ulate this action:

When /^I reload the page$/ do

reload

end

You might find yourself using this if you want to ensure that refreshing

a page after an important form submission behaves properly. Webrat

will repeat the last request, resubmitting forms and their data.

19.4 Specifying Outcomes with View Matchers

Simply by navigating from page to page and manipulating forms in

Whens, you’ve been implicitly verifying some behaviour of your applica-

tion. If a link breaks, a server error occurs, or a form field disappears,

your scenario will fail. That’s a lot of coverage against regressions for

free. In Then steps, we’re usually interested in explicitly specifying the

contents of pages and Webrat provides three custom RSpec matchers

to help with this.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=236

SPECIFYING OUTCOMES WITH VIEW MATCHERS 237

contain()

The simplest possible specification of a page is to ensure it displays the

right words. Webrat’s contain() takes a bit of text and ensures it’s in the

response’s content:

Then /^I should see Thank you!$/ do

response.should contain("Thank you!")

end

contain() also works with regular expressions instead of strings:

Then /^I should see Hello$/ do

response.should contain(/Hello/i)

end

You’ll find you can accommodate almost all of your day to day uses of

the contain() matcher with a couple of reusable step definitions from

Cucumber’s generated webrat_steps.rb file described in the sidebar on

page 231:

Then /^I should see "(.+)"$/ do |text|

response.should contain(text)

end

Then /^I should not see "(.+)"$/ do |text|

response.should_not contain(text)

end

contain() will match against the HTML decoded text of the document, so

if you want to ensure “Peanut butter & jelly” is on the page, you’d type

just that in the string, not “Peanut butter & jelly".

have_selector()

Imagine you’re building an online photo gallery. Specifying the text on

the page probably isn’t good enough if you’re looking to make sure the

photo a user uploaded is being rendered in the album view. In this case,

it can be quite useful to ensure the existence of a CSS selector using

Webrat’s have_selector():

Then /^I should see the photo$/ do

response.should have_selector("img.photo")

end

As you’d expect, that specifies there is at least one element on

the page with a class of photo. Webrat supports the full set of CSS3

selectors like the :nth-child pseudo-class,

giving it lots of flexibility. The image’s src= is particularly important in

this case, so we might want to check that too:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=237

SPECIFYING OUTCOMES WITH VIEW MATCHERS 238

Then /^I should see the photo$/ do

response.should have_selector("img.photo", :src => photo_path(@photo))

end

Webrat will take any keys and values specified in the options hash and

translate them to requirements on the element’s attributes. It’s just a

more readable way to do what you can do with CSS’s img[src=...] syntax

but saves you from having to worry about escaping strings.

Occasionally the number of elements matching a given selector is impor-

tant. It’s easy to imagine a scenario that describes uploading a couple

photos and specifying the number of photos in the album view should

increase. This is supported via the special :count option:

Then /^I should see the photo$/ do

response.should have_selector("img.photo", :count => 5)

end

When we don’t care where on the page a piece of text might be, contain()

gets the job done, but in some cases the specific element the text is

in may be important. A common example would be ensuring that the

correct navigation tab is active. To help in these cases, Webrat provides

the :content option. Here’s how you use it:

Then /^the Messages tab should be active$/ do

response.should have_selector("#nav li.selected", :content => "Messages")

end

This tells Webrat to make sure that at least one element matching the

selector contains the specified string. Like contain(), the provided string

is matched against the HTML decoded content so there’s no need to use

HTML escaped entities.

Finally, for cases when you need to get fancy, have_selector() supports

nesting. If you call it with a block, the block will be passed an object

representing the elements matched by the selector and within the block

you can use any of Webrat’s matchers. Here’s how you might check that

the third photo in an album is being rendered with the right image tag

and caption:

Then /^the Vacation photo should be third in the album$/ do

response.should have_selector("#album li:nth-child(3)") do |li|

li.should have_selector("img", :src => photo_path(@vacation_photo))

li.should contain("Vacation Photo")

end

end

By combining the power of CSS3 selectors with a few extra features,

Webrat’s have_selector() should provide all you need to write expecta-

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=238

BUILDING ON THE BASICS 239

tions for the vast majority of your step definitions. For the rare cases

where CSS won’t cut it, let’s take a look at the have_xpath() matcher,

which lets you go further.

have_xpath()

When CSS just isn’t powerful enough, Webrat exposes have_xpath() as

a matcher of last resort. It’s infinitely powerful, but due to the nature

of XPath it’s usually not the most expressive. Here’s an example from a

recent project:

Then /^the page should not be indexable by search engines$/ do

response.should have_xpath(".//meta[@name = 'robots' and @content = 'noindex, nofo...*TRUNC*
response.should_not have_xpath(".//meta[@name = 'robots' and @content = 'all']")

end

Under the hood, have_selector() actually works by translating CSS selec-

tors to XPath and using the have_xpath() implementation. That means

all of the have_selector() features we explored work with have_xpath()

too.

This implementation strategy hints at an interesting rule about CSS

and XPath: All CSS selectors can be expressed as XPath, but not all

XPath selectors can be expressed as CSS. There are a lot of occasionally

useful features XPath supports that CSS does not, like traversing up

the document tree (e.g. give me all <div>s containing a <p>). While an

overview of XPath is outside the scope of this book, it’s a good thing

to get familiar with if you find yourself wanting more power than CSS

selectors can provide.

19.5 Building on the Basics

Now that we’ve seen how to manipulate forms and specify page content

with Webrat, we’ll take a look at some of Webrat’s more advanced, less

commonly used features. You probably won’t need them day to day, but

it’s helpful to have a rough idea of what’s available so you can recognize

cases when they might come in handy.

Working Within a Scope

Sometimes targeting fields by a label isn’t accurate enough. Going back

to our box office example application, we might want a form where a

user can add multiple genres at once. Each row of the form would have

its own <label> for the genre name, but using Webrat’s fill_in() method

would always manipulate the input field in the first row.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=239

BUILDING ON THE BASICS 240

For these cases, Webrat provides the within() method. By providing a

CSS selector, you can scope all of the contained form manipulations

to a subset of the page. Here’s how you could fill out the second genre

name field:

When /^I fill in Horror for the second genre name$/ do

within "#genres li:nth-child(2)" do

fill_in "Name", :with => "Horror"

end

end

If no elements matching the CSS selector are found on the page, Webrat

will immediately raise a Webrat::NotFoundError. Like most other Webrat

methods, if multiple elements match, it will use the first one in the

HTML source.

Locating Form Fields

When a form is rendered with pre-filled values, you may want to check

that the proper values are present when the page loads. To help with

this, Webrat exposes methods that return objects representing fields

on the page, which include accessors for their values. Here’s a simple

example based on field_labeled(), which looks up input fields based on

their associated <label>s:

Then /^the email address should be pre-filled$/ do

field_labeled("Email").value.should == "robert@example.com"

end

Checkboxes also provide a checked?() method for convenience:

Then /^the Terms of Service checkbox should not be checked$/ do

field_labeled("I agree to the Terms of Service").should_not be_checked

end

When <label>-based lookups won’t work, you can use field_named()

which matches against the field’s name= value, or field_with_id() which

matches against the field’s id=:

Then /^the email address should be pre-filled$/ do

field_named("user[email]").value.should == "robert@example.com"

end

Then /^the email address should be pre-filled$/ do

field_with_id("user_email").value.should == "robert@example.com"

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=240

BUILDING ON THE BASICS 241

Dropping Down to HTTP

To keep our scenarios as expressive and maintainable as possible, we

generally try to avoid tying them to implementation details. For exam-

ple, our users aren’t concerned with the URL of the page they end

up on, just that it’s showing them the right information. Building our

specifications of the app’s behaviour on page content rather than URLs

aligns our executable specifications with our users’ interactions.

For the rare cases where the lower level operation of the application is

important to the customers or it’s the only available option for spec-

ifying a behaviour, Webrat provides a few methods that expose these

details. To check the current URL of the session after the last request

(and following redirects), you can use the current_url() method:

Then /^the page URL should contain the album SEO keywords$/ do

current_url.should =~ /vacation-photos/

end

If your application does some form of browser sniffing or you’re building

a REST API, you might be interested in specifying the behaviour of an

app in the presence of a specific HTTP header. You can set any request

header for the duration of the test with Webrat’s header() method:

Given /^I'm browsing the site using Safari$/ do

header "User-Agent", "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_6; en-us)"

end

When /^I request the users list using API version 2.0$/ do

header "X-API-Version", "2.0"

visit users_path

end

When the MIME type should affect the behaviour of the application,

you can use the http_accept() method as a shortcut to set the Accept

header. It can be called with a small set of symbols that map to MIME

types or a MIME type string:

Given /^my web browser accepts iCal content$/ do

http_accept :ics

end

Given /^my user agent accepts MP3 content$/ do

http_accept "audio/mpeg"

end

Finally, if you’re going to use the HTTP protocol’s built in Basic authen-

tication mechanism, Webrat includes a basic_auth() method for setting

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=241

WRAPPING UP 242

the HTTP_AUTHORIZATION header to the encoded combination of a user-

name and password:

Given /^I am logged in as "robert" with the password "secret"$/ do

basic_auth "robert", "secret"

end

When Things Go Wrong

Every once in awhile, you’ll hit a point where you think a step should

be passing but it’s failing. It might raise a Webrat::NotFoundError about a

field that’s not present or complain that an expected element is missing.

Before diving into your test.log or the Ruby debugger, it’s good to take

a look at the page as Webrat is seeing it, to check if it matches your

understanding of what should be rendered.

You can use the save_and_open_page() method to capture the most

recent response at any point in your scenario, and open it up in a web

browser as a static HTML file on your development machine. Just drop

it in before any line that seems to be misbehaving:

When /^I uncheck Save as draft$/ do

save_and_open_page

uncheck "Save as draft"

end

Now when you re-run the scenario, you’ll be shown the page response

as Webrat captured it.

19.6 Wrapping Up

Before we move on to looking at how the Automated Browser style of

step definitions can be used to exercise interactions that are dependent

on JavaScript, let’s take a moment to consider what we’ve learned.

• Webrat simulates a browser by building on the functionality of the

Rails integration testing API, providing an expressive language to

describe manipulating a web application.

• By specifying behaviour at a high level and avoiding coupling our

tests to implementation details, we can build expressive and robust

step definitions that give us confidence that the full Rails stack

stays working while avoiding brittle scenarios.

• Leveraging the DMA style for Givens can provide convenience,

simplicity and speed without reducing confidence. We use this

approach when the actions required to get to a specific database

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=242

WRAPPING UP 243

state have already been exercised through the full Rails stack in

their own Simulated Browser scenarios.

• Through the course of describing the actions in our scenarios in

our When steps, Webrat implicitly ensures that requests are suc-

cessful and the right links and form elements are on the page.

In our Then steps we specify the outcomes from our scenarios in

terms of expected text and elements using Webrat’s view match-

ers.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=243

Chapter 20

Automating the Browser with
Webrat

Coming soon ...

Prepared exclusively for Simone Joswig

Chapter 21

Rails Views
The user interface is subject to more change than just about anything

else in the life of an application. These changes are driven by usability

concerns, user experience considerations, design aesthetics, as well as

evolving application behaviour. This makes producing simple, flexible,

and easy to change views desirable and beneficial. But there is more.

Views can also have a profound impact on the design of the underlying

code base. Focusing on views last commits you to a design and imple-

mentation before you have an opportunity to discover what you need

and want to work with. We think that focusing on views first, letting

emergent design take its course, will lead to simpler views, driving an

application design that is better aligned with application behaviour.

This chapter is going to take you through the process of developing

views from the outside-in, using view specs written in RSpec as the

driving force.

21.1 Writing View Specs

A view spec is a collection of code examples for a particular view tem-

plate. Unlike examples for POROs (plain old ruby objects), view exam-

ples are inherently state-based. We specify expectations by supplying

objects and data, rendering the view, and then looking at the rendered

content.

In most cases, we’re interested in the semantic content as it pertains to

requirements of the application, as opposed to the syntactical correct-

ness of the markup. The main exception to this is forms, in which case

Prepared exclusively for Simone Joswig

WRITING VIEW SPECS 246

we do want to specify that form elements are rendered correctly within

a form tag.

A Big Misconception

by Zach Dennis

I routinely meet developers who dismiss the value in writing view specs.

After talking with them I quickly understand why. They often think about

the specs as strictly syntactical verification for page layout! This just isn’t

the case.

Page structure changes too frequently to try to keep specs in sync with

markup changes. It’s just not that valuable to know that a div is inside of

another div which is inside of something else—just like it’s not that

valuable to assert static content. Markup and static content are better

handled by people, not specs.

Before I started driving views with specs I noticed artifacts creeping up

into the views. They’d start slowly at first, but over time they’d make it

painful to change the views and awkward to extend parts of the app.

In an effort to alleviate the pain these artifacts would be moved into

helpers, controller actions, and model methods. This did make the views

more manageable, but it didn’t always make the code easier to change or

understand. In many cases the problems had really just found a new

home. And once the bandaid wore off the design of the app appeared

worse off.

I’ve found that driving views with specs puts me in a position to make

better decisions in small repeatable increments as I quickly piece together

a view. I spend far less time running into issues related to bad design,

either in the views or in the rest of the app. Specs make it natural to

define clean separation of what goes in a view, what goes in the controller,

and what goes in the model.

For me, driving views with specs influences the entire application—for the

better.

Driving views through examples helps us think about what the view

needs in order for it to do its job. It encourages us to write the code we

wish we had to fulfill those needs. This leads to simple views that defer

logic and complexity to objects with well-defined interfaces. The result

is views that are flexible and adaptable in the face of the high frequency

of changes of the UI.

Not every example will lead you to an “Ah-ha!" moment. Some will

only lead to views that meet simple expectations, but even that has

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=246

WRITING VIEW SPECS 247

value. After all, it is often the simple things which lead to that “Ah-ha!"

moment.

So, let’s get started. You’ll want to generate a fresh Rails app with

RSpec, rspec-rails, and Webrat installed. We won’t be using Cucum-

ber in this chapter so it’s not required, but it won’t be in our way if you

have it installed. Key in the following commands:

rails views_example

cd views_example

sudo gem install rspec rspec-rails webrat

script/generate rspec

We’re going to use the Webrat matchers that you learned about in Chap-

ter 19, Simulating the Browser with Webrat, on page 220, so we’ll need

to configure the project accordingly.

Configuring Webrat

Open up spec_helper.rb and add the following line after rspec is required,

but before the Spec::Runner.configure block

require 'webrat'

Now add this line anywhere inside of the Spec::Runner.configure block.

This exposes Webrat’s matchers to the view specs:

config.include Webrat::Matchers, :type => :views

Here’s an example spec_helper.rb file to show you the placement. Your

spec_helper.rb file may not look identical to this:

move out to code example

ENV["RAILS_ENV"] = "test"

require File.expand_path(File.dirname(__FILE__) + "/../config/environment")

require 'spec'

require 'spec/rails'

require 'webrat'

Spec::Runner.configure do |config|

config.use_transactional_fixtures = true

config.use_instantiated_fixtures = false

config.fixture_path = RAILS_ROOT + '/spec/fixtures/'

config.include Webrat::Matchers, :type => :views

end

That’s it. Webrat and RSpec are ready to go. Now, on to writing view

specs.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=247

WRITING VIEW SPECS 248

Simple Example

We’re going to build a view that displays a single message, and we’re

going to write a spec for it first. Create a show.html.erb_spec.rb file in the

RAILS_ROOT/spec/views/messages/ directory. That directory won’t exist so

you’ll need to create it. Here’s what the contents of that spec should

look like:

Download rails_views/messages/01/spec/views/messages/show.html.erb_spec.rb

require File.expand_path(File.dirname(__FILE__) + '/../../spec_helper')

describe "messages/show.html.erb" do

before(:each) do

@message = stub("Message")

assigns[:message] = @message

end

it "should display the text of the message" do

@message.stub!(:text).and_return "Hello world!"

render "messages/show.html.erb"

response.should contain("Hello world!")

end

end

The script/generate rspec command we ran earlier installed a script/spec

command. Use that now to run the spec:

script/spec spec/views/messages/show.html.erb_spec.rb

You should have the following failure:

Missing template messages/show.html.erb

The template doesn’t exist yet. Go ahead and add show.html.erb to the

RAILS_ROOT/app/views/messages/ directory (which you’ll need to make)

and run the spec again.

expected the following element's content to include "Hello world!"

This time it failed because there’s nothing in the show.html.erb template.

Now add the following to make the example pass:

Download rails_views/messages/03/app/views/messages/show.html.erb

<%=h @message.text %>

Run the spec again. You should get one example, zero failures. And

that’s it for the first example. Pretty simple, right? While this example

didn’t do justice to the intricacies views are often composed of, it did

give us just enough to start us with a foundation in which to build.

Let’s break down the spec:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/01/spec/views/messages/show.html.erb_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/03/app/views/messages/show.html.erb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=248

WRITING VIEW SPECS 249

Download rails_views/messages/01/spec/views/messages/show.html.erb_spec.rb

require File.expand_path(File.dirname(__FILE__) + '/../../spec_helper')

describe "messages/show.html.erb" do

before(:each) do

@message = stub("Message")

assigns[:message] = @message

end

it "should display the text of the message" do

@message.stub!(:text).and_return "Hello world!"

render "messages/show.html.erb"

response.should contain("Hello world!")

end

end

The before block gets run before every example. The first line inside

it is @message = stub("Message") which assigns a stub to the @message

instance variable in the spec. At this point the instance variable is not

accessible to the view when it gets rendered.

The second line in the before block is assigns[:message] = @message which

makes a @message instance variable available to the view. The name of

the variable is determined by the symbol :message that is passed into

assigns(). If that line read assigns[:foo] = @message then a @foo instance

variable would be available in our view which pointed to the message

stub.

Each time an example in the view spec runs a new stub will be created

and assigned to a local instance variable in the spec, which would then

be assigned to an instance variable accessible by the view.

Now for the code example. The first thing it does is stub out the text()

method on the stub message. Setting up objects and data for the view

needs to happen before the view is actually rendered.

The next line, render "messages/show.html.erb", renders the messages/show.html.erb

template.

The last line, response.should contain("Hello World!"), specifies that the view

displays the same text that is being returned from the text() method that

we stubbed only two lines before. Isn’t it easy to read the example with

everything relevant being included inside the it block?

In addition to understanding the breakdown of a spec here are a few

more things we can glean from what we just did:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/01/spec/views/messages/show.html.erb_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=249

WRITING VIEW SPECS 250

Directory organization The directory structure for view specs mimics

the directory structure found in RAILS_ROOT/app/views/. For exam-

ple, specs found in spec/views/messages/ will be for view templates

found in app/views/messages/.

File naming View specs are named after the template they provide

examples for, with an _spec.rb appended to the filename. For exam-

ple, index.html.erb would have a corresponding spec named index.html.erb_spec.rb.

Always require spec_helper.rb Every view spec will need to require the

spec_helper.rb file. Otherwise you’ll get errors about core rspec or

rspec-rails methods not existing.

Describing view specs The outer describe() block in a view spec typ-

ically uses the path to the view minus the RAILS_ROOT/app/views/

portion. While this isn’t a hard requirement, it clearly communi-

cates what template the examples are for.

In addition to revealing some of the conventions we use with RSpec and

Rails, we also used some helper methods and matchers:

assigns()

The assigns() method is used to assign instance variables in the view. It

is equivalent to assigning instance variables in a controller and having

Rails make them available to the view. For example:

assigns[:foo] = stub("foo")

assigns[:text] = "some text"

A call to assigns() must happen before the call to render(), and you must

use assigns() to make something available in the view. An instance vari-

able in a view spec will not be accessible to the view being rendered

without using assigns().

render()

As its name suggests the render() method is used to render a template.

It behaves just like any render call you would use in your application.

Beneath the covers, it really is making a render call on a controller—just

not on one of your application’s controllers.

stub()

You’ve already learned about the stub() method in Chapter 12, Mocking

in RSpec, on page 151. The stub used in our view spec is one and the

same. In view specs you do have access to the mocking framework that

RSpec is configured to use.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=250

MOCKING MODELS 251

contain()

The contain() method is a Webrat matcher. All matchers that Webrat

has to offer are available in view specs since we configured RSpec to

include them. This means methods like have_selector, have_xpath, etc.

are available.

Now that you’ve got the basics down, let’s explore a little beyond.

21.2 Mocking Models

When working outside-in it’s common to discover a need for a model

that doesn’t yet exist. Rather than switch focus to the model we can

utilize the mock_model() method provided by rspec-rails to continue

flushing out the view.

Mock Example

Building on the messages example we started with earlier in the chap-

ter, we’ll introduce the need for a model and continue driving the view,

utilizing mock_model.

Based on the view spec conventions we learned about earlier in the

chapter, we need a spec named new.html.erb_spec.rb in the spec/views/messages/

directory. Here are the contents of the spec we’ll start with:

Download rails_views/messages/03/spec/views/messages/new.html.erb_spec.rb

require File.expand_path(File.dirname(__FILE__) + '/../../spec_helper')

describe "messages/new.html.erb" do

before(:each) do

@message = stub("Message")

assigns[:message] = @message

end

it "should render a form to create a message" do

render "messages/new.html.erb"

response.should have_selector("form[method=post]", :action => messages_path) do

|form|

form.should have_selector("input[type=submit]")

end

end

end

Running the spec should result in a familiar failure. Go ahead and

create the new.html.erb template in app/views/messages and run the spec

again.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/03/spec/views/messages/new.html.erb_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=251

MOCKING MODELS 252

NameError in 'messages/new.html.erb should render a form to create a message'

undefined local variable or method `messages_path' for \

#<Spec::Rails::Example::ViewExampleGroup::Subclass_1:0

At this point the example is failing because there is no messages_path

route. Go ahead and update the routes.rb file to produce the appropriate

paths:

Download rails_views/messages/05/config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.resources :messages

end

The example will still be failing, but you should see another familiar

error message: MissingTemplate. Go ahead and implement the new.html.erb

template. Here’s one way it could work:

Download rails_views/messages/05/app/views/messages/new.html.erb

<% form_for @message do |f| %>

<%= f.submit "Save" %>

<% end %>

The MissingTemplate error is gone, but the spec still fails with a new

error:

undefined method `spec_mocks_mock_path' for #<ActionView::Base:0x2216d38>

What’s happening here is that the form_for() method used in the view

expects the message to be a model, but it’s a simple stub. If this has

piqued your interest to discover how and what form_for relies on under

the hood, by all means explore! Otherwise, we can get past this failure

by using the mock_model() method.

Let’s update the before block to use the mock_model() method instead

of stub():

Download rails_views/messages/05/spec/views/messages/new.html.erb_spec.rb

before(:each) do

@message = mock_model(Message)

assigns[:message] = @message

end

Running the spec results in a failure:

uninitialized constant Message

The Message class we passed to mock_model() doesn’t exist yet, so we

need to create it. Go ahead and make a message.rb file in the app/models/

directory. We’ll use a plain ruby class for now. We can subclass ActiveRe-

cord::Base later, when it’s time to implement the model.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/05/config/routes.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/05/app/views/messages/new.html.erb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/05/spec/views/messages/new.html.erb_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=252

MOCKING MODELS 253

Download rails_views/messages/06/app/models/message.rb

class Message

end

The example should still be failing, but for a different reason:

expected following output to contain a <form[method=post][action='/messages'] \

action='/messages'/> tag

To resolve this failure we need to know a little bit more about mock_model.

Using mock_model will produce a mock which acts like an existing

model (e.g. new_record?() returns false). When form_for gets an existing

model it produces a form action to update the model, which is not what

we want. We want a form which posts to create a new model. It turns

out we can do this by telling the mocked model to act like a new record:

Download rails_views/messages/07/spec/views/messages/new.html.erb_spec.rb

@message = mock_model(Message).as_new_record

Update the before block to do that and re-run the spec. You should now

have one example, zero failures.

Now that we’ve got the form working, let’s add some input fields. We’ll

start with a code example that expects a text field for the message title:

Download rails_views/messages/08/spec/views/messages/new.html.erb_spec.rb

it "should render a text field for the message title" do

@message.stub!(:title).and_return "the title"

render "messages/new.html.erb"

response.should have_selector("form") do |form|

form.should have_selector(

"input[type=text]",

:name => "message[title]",

:value => "the title"

)

end

end

Run the spec. The example we just wrote should be the only failure. Go

ahead and implement the view to resolve that failure:

Download rails_views/messages/09/app/views/messages/new.html.erb

<% form_for @message do |f| %>

<%= f.text_field :title %>

<%= f.submit "Save" %>

<% end %>

Now when you run the spec you still have a failure, but it’s coming

from the example we didn’t touch. Let’s take a closer look at the failure

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/06/app/models/message.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/07/spec/views/messages/new.html.erb_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/08/spec/views/messages/new.html.erb_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/09/app/views/messages/new.html.erb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=253

MOCKING MODELS 254

message:

Mock 'Message_1001' received unexpected message :title with (no args)

RSpec’s mock objects let us know when they receive messages they

don’t expect. In this case, the text_field() helper in the view is asking the

mock message for its title attribute, but the mock hasn’t been told to

expect that request, so it raises an error.

The first example doesn’t care about the message title, so we don’t want

to have to tell the mock to expect title(). What we can do is tell the

mocked message to act like a null object. This will let us write exam-

ples that are well focused without introducing unnecessary verbosity in

other examples.

Go ahead and update the before block:

Download rails_views/messages/10/spec/views/messages/new.html.erb_spec.rb

before(:each) do

@message = mock_model(Message, :null_object => true).as_new_record

assigns[:message] = @message

end

Let’s add one more example against the new page to make sure the

form has a text area for the text of the message. Add this example to

your spec:

Download rails_views/messages/10/spec/views/messages/new.html.erb_spec.rb

it "should render a text area for the message text" do

@message.stub!(:text).and_return "the message"

render "messages/new.html.erb"

response.should have_selector("form") do |form|

form.should have_selector(

"textarea",

:name => "message[text]",

:content => "the message"

)

end

end

Go ahead and implement the example. You should end up with three

examples, zero failures. This time the new field in the form didn’t cause

other examples to fail, thanks to making the message a null object.

Mock models that act as_null_object help to keep view specs lean and

simple, allowing each example to be explicit about only the things it

cares about. They also save us from unwanted side-effects being intro-

duced in other examples.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/10/spec/views/messages/new.html.erb_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/10/spec/views/messages/new.html.erb_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=254

MOCKING MODELS 255

Now let’s take a look at mock_model a little more in-depth.

mock_model()

The mock_model() method sets up an RSpec mock with common ActiveRe-

cord methods stubbed out. In its most basic form mock_model can be

called with a single argument: the class you want to represent as an

ActiveRecord model. The class must exist, but it doesn’t have to be a

subclass of ActiveRecord::Base. Here are the default stubs on a mocked

model:

new_record? Returns false since mocked models represent existing

records by default.

id Returns an auto-generated number to represent an existing record.

to_param Returns a string version of the id.

Just like standard mocks/stubs in RSpec, additional methods can be

stubbed by passing in an additional Hash argument of method name/value

pairs. For example:

user = mock_model(User,

:login => "zdennis",

:email => "zdennis@example.com"

)

In case you don’t want your mock to represent an existing record, you

can tell it to be a new record by sending it the as_new_record() message:

new_user = mock_model(User).as_new_record

This will change the default values stubbed by mock_model to the fol-

lowing:

new_record? Will return true just like a new ActiveRecord object.

id Will return nil just like a new ActiveRecord object.

to_param Will return nil just like a new ActiveRecord object.

We encourage you to use mock_model when the code example is clearly

expressing a dependency on an ActiveRecord model. If that’s not the

case use the mock() or stub() methods provided by the RSpec mocking

framework with a clear description for what is expected in the view.

While mock_model provides value when writing view examples, it can

also be used in any kind of spec throughout a Rails app. As your appli-

cation grows and your models take shape you’ll find that you have an

alternative, the stub_model() method which we’ll explore next.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=255

WORKING WITH PARTIALS 256

stub_model

The stub_model() method is similar to mock_model() except that it cre-

ates an actual instance of the model. This requires that the model has

a corresponding table in the database.

You create a stub_model just like a mock_model: the first argument is the

model to instantiate, and the second argument is a Hash of method/value

pairs to stub.

user = stub_model(User)

user = stub_model(User,

:login => "zdennis",

:email => "zdennis@example.com"

)

Similar to mock_model, a stubbed model represents an existing record

by default, and you can tell it to act like a new record with as_new_record().

In fact, stub_model is a lot like mock_model, with just a couple of excep-

tions.

Because stub_model creates an ActiveRecord model instance, you don’t

need to tell it to act as_null_object() to keep it quiet when asked for its

attributes. ActiveRecord will just return nil in those cases, as long as

the attribute is defined in the schema.

The other difference is that stub_model() prohibits the model instance

from accessing the database. If it receives any database related mes-

sages, like save(), or update_attributes(), it will raise an error:

Spec::Rails::IllegalDataAccessException: stubbed models are not allowed to \

access the database

This can be a good indicator that your view is doing something it shouldn’t

be doing, or that the method in question should really be stubbed out

in the example.

Like mock_model, stub_model can be used in any kind of spec through-

out your Rails app.

21.3 Working with Partials

Rails developers work with partials every day. We introduce them to

re-use part of a view, or simply break up a view into more manageable

chunks. We’ll explore how partials are handled in the outside-in style

of driving views.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=256

WORKING WITH PARTIALS 257

Extracting Partials for Organization

Once again we’ll build on the messages example we started with ear-

lier in this chapter. We’ll start where we left off in Section 21.2, Mock

Example, on page 251. We had just produced a new page with a form

to create a simple message, and now we’re going to add a sidebar com-

ponent to the page to display recent messages.

Starting with the spec, open up the new.html.erb_spec.rb again, and add

the following example group:

Download rails_views/messages/11/spec/views/messages/new.html.erb_spec.rb

it "should render recent messages" do

assigns[:recent_messages] = [

mock_model(Message, :text => "Message 1", :null_object => true),

mock_model(Message, :text => "Message 2", :null_object => true)

]

render "messages/new.html.erb"

response.should have_selector(".recent_messages") do |sidebar|

sidebar.should have_selector(".message", :content => "Message 1")

sidebar.should have_selector(".message", :content => "Message 2")

end

end

Run the spec. You should have four examples, one failure. Let’s imple-

ment the view to satisfy the latest example:

Download rails_views/messages/11/app/views/messages/new.html.erb

<div class="sidebar">

<ul class="recent_messages">

<% @recent_messages.each do |message| %>

<li class="message"><%=h message.text %>

<% end %>

</div>

<% form_for @message do |f| %>

<%= f.text_field :title %>

<%= f.text_area :text %>

<%= f.submit "Save" %>

<% end %>

Semantics vs Syntax

Notice that we added a sidebar container on the page, but it’s not ref-

erenced in the spec. The spec also references elements with the classes

recent_messages and message, but it does not specify that those ele-

ments should be ul and li, or that the ul is inside a div.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/11/spec/views/messages/new.html.erb_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/11/app/views/messages/new.html.erb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=257

WORKING WITH PARTIALS 258

While we do care about the semantic details, we do not care about

syntactic detail. This distinction is not always black and white. For

example, we do care that the messages are inside a recent_messages

container, and that has both semantic and syntactic implications.

Semantic HTML and view specs complement each other. They both

provide meaning about what’s being displayed, rather than just the

markup. Even if the presentation of the recent messages changes, we

can be assured that they are still being displayed. This adds to the

flexibility of the view and its spec.

Getting back to the spec, there are now four examples, three of which

are failing.

The example we just added is passing, but we broke the other three!

That’s because the view now depends on a @recent_messages instance

variable that is only being set up by the new example. Even though the

other examples aren’t interested in @recent_messages, they still have to

supply it for the view to render properly.

Because the other examples don’t care what’s in @recent_messages, how-

ever, we can just supply an empty array in the before(:each) block:

Download rails_views/messages/11/spec/views/messages/new.html.erb_spec.rb

before(:each) do

@message = mock_model(Message, :null_object => true).as_new_record

assigns[:message] = @message

assigns[:recent_messages] = []

end

Now all four examples should be passing.

Now that we’ve got a sidebar, let’s move it out into its own partial. Not

necessarily for re-use at this point, but just for organization.

Create a messages/_sidebar.html.erb template and move the sidebar con-

tainer to reside in that partial. In doing this, you should update the

_sidebar.html.erb partial to rely on a local variable recent_messages rather

than on an instance variable:

Download rails_views/messages/12/app/views/messages/_sidebar.html.erb

<div class="sidebar">

<ul class="recent_messages">

<% recent_messages.each do |message| %>

<li class="message"><%=h message.text %>

<% end %>

</div>

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/11/spec/views/messages/new.html.erb_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/12/app/views/messages/_sidebar.html.erb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=258

WORKING WITH PARTIALS 259

Now update the new.html.erb template to render the sidebar partial,

passing in the appropriate locals:

Download rails_views/messages/12/app/views/messages/new.html.erb

<%= render :partial => "sidebar",

:locals => { :recent_messages => @recent_messages } %>

<% form_for @message do |f| %>

<%= f.text_field :title %>

<%= f.text_area :text %>

<%= f.submit "Save" %>

<% end %>

Run the spec again—four examples, zero failures.

This is how including partials works in Rails. We don’t create a new view

spec for the partial and the examples in the existing view spec don’t

change. The only thing that changes is how the view being rendered

is organized. This approach works well when partials are extracted to

make portions of the UI more manageable.

Let’s take this example one step further. Let’s re-use it in another view

and find out about another technique—isolating partials.

Extracting Partials for Re-use

At this point the new page has a form to create a message and it has

a sidebar to display recent messages. But how often is there a new

page without a corresponding edit page? Not that often. We need a way

to allow people to edit their messages. Who else is going to fix those

typos?

We’re going to extract the form for re-use, which is exactly like extract-

ing the sidebar for organization, except that we’ll also extract the form’s

spec from new.html.erb_spec.rb.

Start by creating app/views/messages/_form.html.erb, copying over the form

from app/views/messages/new.html.erb, and rendering the _form partial

from the new template:

Download rails_views/messages/14/app/views/messages/new.html.erb

<%= render :partial => "sidebar",

:locals => { :recent_messages => @recent_messages } %>

<%= render :partial => "form", :locals => { :message => @message } %>

Download rails_views/messages/14/app/views/messages/_form.html.erb

<% form_for message do |f| %>

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/12/app/views/messages/new.html.erb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/14/app/views/messages/new.html.erb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/14/app/views/messages/_form.html.erb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=259

WORKING WITH PARTIALS 260

<%= f.text_field :title %>

<%= f.text_area :text %>

<%= f.submit "Save" %>

<% end %>

Be sure to update the call to form_for() to utilize the message vari-

able passed in from the locals rather than relying on the @message

instance variable. Now run spec/views/messages/new.html.erb_spec.rb and

it should still be passing.

Next, create spec/views/messages/_form.html.erb_spec.rb and copy over all

the form related examples from spec/views/messages/new.html.erb_spec.rb.

You’ll need to modify them to render the partial instead of the new tem-

plate, and pass in the appropriate locals:

Download rails_views/messages/14/spec/views/messages/_form.html.erb_spec.rb

require File.expand_path(File.dirname(__FILE__) + '/../../spec_helper')

describe "messages/_form.html.erb" do

before(:each) do

@message = mock_model(Message, :null_object => true)

end

context "when the message is a new record" do

it "should render a form to create a message" do

@message.as_new_record

render "messages/_form.html.erb", :locals => { :message => @message }

response.should have_selector("form[method=post]", :action => messages_path) do

|form|

form.should have_selector("input[type=submit]")

end

end

end

context "when the message is an existing record" do

it "should render a form to update a message" do

render "messages/_form.html.erb", :locals => { :message => @message }

response.should have_selector(

"form[method=post]",

:action => message_path(@message)

) do |form|

form.should have_selector("input[type=submit]")

end

end

end

it "should render a text field for the message title" do

@message.stub!(:title).and_return "the title"

render "messages/_form.html.erb", :locals => { :message => @message }

response.should have_selector("form") do |form|

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/14/spec/views/messages/_form.html.erb_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=260

WORKING WITH PARTIALS 261

form.should have_selector(

"input[type=text]",

:name => "message[title]",

:value => "the title"

)

end

end

it "should render a text area for the message text" do

@message.stub!(:text).and_return "the message"

render "messages/_form.html.erb", :locals => { :message => @message }

response.should have_selector("form") do |form|

form.should have_selector(

"textarea",

:name => "message[text]",

:content => "the message"

)

end

end

end

Once you see that passing, add an example to new.html.erb_spec.rb to

specify that it renders the _form partial:

Download rails_views/messages/14/spec/views/messages/new.html.erb_spec.rb

it "should render the messages/form" do

template.should_receive(:render).with(

:partial => "form",

:locals => { :message => @message }

).and_return "rendered form partial"

render "messages/new.html.erb"

response.should contain("rendered form partial")

end

If you run new.html.erb_spec.rb now, you’ll see four passing examples.

These are the four that got copied over to _form.html.erb_spec.rb. Because

those same examples are passing in the _form spec, we can safely remove

them from the new spec.

Now that we’re done refactoring, we can go back into spec-driving mode

and add an example that expects the edit template to render the form

partial. Go ahead and create a spec for edit with the following example:

Download rails_views/messages/14/spec/views/messages/edit.html.erb_spec.rb

it "should render the messages/form" do

template.should_receive(:render).with(

:partial => "form",

:locals => { :message => @message }

).and_return "rendered form partial"

render "messages/edit.html.erb"

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/14/spec/views/messages/new.html.erb_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/14/spec/views/messages/edit.html.erb_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=261

REFACTORING CODE EXAMPLES 262

response.should contain("rendered form partial")

end

Run that spec, watch it fail, and add a edit.html.erb template that ren-

ders the partial:

Download rails_views/messages/14/app/views/messages/edit.html.erb

<%= render :partial => "form", :locals => { :message => @message } %>

Run the spec again and, voila! We’re back to green.

This time we extracted a partial with the goal of re-use, not just to

organize the application code. By extracting a partial with its own spec,

any changes to requirements for this form will only impact this one

spec and the form itself. This helps keep views and their specs very

easy to maintain.

Speaking of maintaining specs, let’s look at a few techniques for man-

aging specs as they grow and repetitive patterns emerge.

21.4 Refactoring Code Examples

Over time, patterns begin to emerge and take shape in view specs.

These patterns range from single statement patterns, like expecting

similar content in different specs, to duplicate examples. RSpec sup-

ports two techniques for removing this sort of duplication: shared exam-

ples and custom matchers.

You learned about custom matchers in Section 15.3, Custom Matchers,

on page 182. The shared examples are the same ones you learned about

in Section 10.5, Sharing Examples in a Module, on page 122. Let’s look

at using them first.

Shared Examples

View specs may be the sweet spot for shared examples in Rails apps

since the examples are easily isolated from one another and there’s

no need to share state across examples. You can simply override the

expected assigns, or pass in the appropriate options to render().

In the last section, we extracted a form partial from the new page so we

could re-use it in the edit page. You may have noticed that at the end

of the process we had duplicate examples in new.html.erb_spec.rb and

edit.html.erb_spec.rb for ensuring the form partial was rendered. We can

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/14/app/views/messages/edit.html.erb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=262

REFACTORING CODE EXAMPLES 263

remove this duplication by using shared examples to consolidate the

example to one location with a good description.

Make the spec/views/shared_examples/shared_partials_spec.rb file with the

following shared example:

Download rails_views/messages/14/spec/views/shared_examples/shared_partials_spec.rb

shared_examples_for "a template that renders the messages/form partial" do

it "should render the messages/form" do

template.should_receive(:render).with(

:partial => "form",

:locals => { :message => @message }

).and_return "rendered form partial"

render "messages/new.html.erb"

response.should contain("rendered form partial")

end

end

Right now the render call knows which template to render. We don’t

want it to know that, otherwise it’d be a pretty lousy shared example.

We can take advantage of the render() method’s implicit default for the

template: if no template is submitted, it will grab the first argument

passed to describe() in the including spec.1

Download rails_views/messages/15/spec/views/shared_examples/shared_partials_spec.rb

render

With that change, we can update new.html.erb_spec.rb to utilize the shared

example. Add the following line to the spec:

Download rails_views/messages/15/spec/views/messages/new.html.erb_spec.rb

it_should_behave_like "a template that renders the messages/form partial"

Go ahead and run the spec. It should fail with a similar message:

Shared Example Group 'a template that renders the messages/form partial' can not \

be found (RuntimeError)

The spec can’t find the shared example. We want shared examples

to always be loaded so specs that rely on them work. Let’s update

spec_helper.rb to load all spec files found in any shared_examples/ direc-

tory. Append the following to your spec_helper.rb:

Download rails_views/messages/16/spec/spec_helper.rb

Dir[File.dirname(__FILE__) + "/**/shared_examples/**/*_spec.rb"].each do |file|

require file

1. This feature was added in rspec-rails-1.2

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/14/spec/views/shared_examples/shared_partials_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/15/spec/views/shared_examples/shared_partials_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/15/spec/views/messages/new.html.erb_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/16/spec/spec_helper.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=263

REFACTORING CODE EXAMPLES 264

end

Run the spec again—three examples, zero failures. Let’s do a quick

sanity check to make sure it’s doing what we expect. Open the new

page and remove the form. Now run the spec again—it should fail. Go

ahead and put the form back in place, run the spec again, and watch

it pass. Now we can be confident our shared example is doing what we

expect.

With the shared example working let’s remove the original examples

which ensured the form partial was being rendered. The new.html.erb_spec.rb

should look like:

Download rails_views/messages/16/spec/views/messages/new.html.erb_spec.rb

require File.expand_path(File.dirname(__FILE__) + '/../../spec_helper')

describe "messages/new.html.erb" do

before(:each) do

@message = mock_model(Message, :null_object => true).as_new_record

assigns[:message] = @message

assigns[:recent_messages] = []

end

it_should_behave_like "a template that renders the messages/form partial"

it "should render recent messages" do

assigns[:recent_messages] = [

mock_model(Message, :text => "Message 1", :null_object => true),

mock_model(Message, :text => "Message 2", :null_object => true)

]

render "messages/new.html.erb"

response.should have_selector(".recent_messages") do |sidebar|

sidebar.should have_selector(".message", :content => "Message 1")

sidebar.should have_selector(".message", :content => "Message 2")

end

end

end

For practice, go ahead and make the same change to edit.html.erb_spec.rb.

Then let’s explore writing custom matchers.

Custom Matchers

As an application grows, we find ourselves expecting similar content

in many view specs. We see the same links, form fields, custom HTML

components, and even convention-based markup. For these cases, we

can write custom matchers to reduce duplication and produce more

expressive examples.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/16/spec/views/messages/new.html.erb_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=264

REFACTORING CODE EXAMPLES 265

Simple Matcher Example

Consider the case where your project utilizes a convention for using

anchor tags and CSS to produce visually stunning buttons used through-

out the site. Rather than rely on manually typing in the appropriate

selector, we can improve on this by writing a custom matcher.

Take this example:

Download rails_views/messages/16/spec/views/buttons.html.erb_spec.rb

it "should have a button to create a message" do

render "buttons.html.erb"

response.should have_selector("a.button", :href => messages_path)

end

We can make a small improvement by pulling out the pattern into a

custom matcher rather than duplicate the effort for having to remember

the appropriate CSS selector each time we use a button. Here’s our

new matcher, using RSpec’s simple_matcher and Webrat’s have_selector

matcher to do most of the work for us:

Download rails_views/messages/16/spec/spec_helpers/views/matchers.rb

def have_button(href)

simple_matcher("a button to #{href}") do |response|

response.should have_selector("a.button", :href => href)

end

end

Now our examples can be slightly improved:

Download rails_views/messages/16/spec/views/buttons.html.erb_spec.rb

it "should have a button to create a message" do

render "buttons.html.erb"

response.should have_button(messages_path)

end

This example is a little win. It increases the clarity of each example that

expects a button. If the convention changes, we’ve isolated that change

to one place—the have_button() matcher.

Organizing Matchers

Custom matchers can be put anywhere you want as long as they are

required from spec_helper.rb and included for the appropriate specs. A

simple guideline to follow is to organize custom matchers by the type of

spec they’re going to be used in.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/16/spec/views/buttons.html.erb_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/16/spec/spec_helpers/views/matchers.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/16/spec/views/buttons.html.erb_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=265

WHAT WE JUST LEARNED 266

Consider the have_button() matcher we just looked at. A good home for

this might be a ViewHelpers::Matchers module in spec/spec_helpers/views/matchers.rb.

Here’s what the file would look like:

Download rails_views/messages/16/spec/spec_helpers/views/matchers.rb

module ViewHelpers

module Matchers

def have_button(href)

simple_matcher("a button to #{href}") do |response|

response.should have_selector("a.button", :href => href)

end

end

end

end

To get access to the view matchers in view specs, all you need to do

is update spec_helper.rb to include them. You do this by adding a line

that requires every ruby file in the spec/spec_helpers/ directory. This line

goes before the Spec::Runner.configure block:

Download rails_views/messages/16/spec/spec_helper.rb

Dir[File.dirname(__FILE__) + "/spec_helpers/**/*.rb"].each do |file|

require file

end

Next, inside the Spec::Runner.configure block add the following line to

include the matcher module:

Download rails_views/messages/16/spec/spec_helper.rb

config.include ViewHelpers::Matchers, :type => :view

That’s it. Now any custom matchers we add to ViewHelpers::Matchers will

be made available to our view specs.

21.5 What We Just Learned

• User Interface changes more often than anything else in an appli-

cation.

• Specifying syntactic detail makes code examples brittle. We want

to specify view semantics without getting bogged down in syntactic

detail.

• View specs use a custom example group provided by the rspec-

rails library.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_views/messages/16/spec/spec_helpers/views/matchers.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/16/spec/spec_helper.rb
http://media.pragprog.com/titles/achbd/code/rails_views/messages/16/spec/spec_helper.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=266

WHAT WE JUST LEARNED 267

• View specs live in a directory tree parallel to the views themselves,

and follow a naming convention of spec/path/to/view.html.erb_spec.rb

for app/path/to/view.html.erb.

• Use Webrat’s have_xpath() and have_selector() matchers for view

specs.

• Use mock_model() and stub_model() to isolate view specs from the

database and underlying business logic of your models.

• Partials can have their own view specs.

• Extract shared examples and custom matchers to help keep your

view specs DRY.

One thing we didn’t cover is how to specify helper methods that we

extract from views into helper modules. That’s because rspec-rails sup-

ports specifying helpers in isolation from the controllers and views that

use them, in the form of Helper Specs. We’ll be discussing that in detail

in the (as yet) unwritten chp.railsHelpers.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=267

Chapter 22

Rails Helpers
Coming soon ...

Prepared exclusively for Simone Joswig

Rails’ controllers are like waiters in a restaurant. A

customer orders a steak dinner from a waiter. The waiter

takes the request and tells the kitchen that he needs a

steak dinner. When the steak dinner is ready the waiter

delivers it the customer for her enjoyment.

Craig Demyanovich

Chapter 23

Rails Controllers
The restaurant metaphor does a great job describing the role of con-

trollers in a Rails application. Just as a waiter doesn’t need to know

how to prepare a steak dinner, a controller doesn’t need to know the

details of building a model. Keeping these details out of the controller

provides a natural separation of concerns between the controller and

the model, which makes the models easier to change, extend, and re-

use.

This chapter will show you how to develop controllers outside-in using

controller specs as the driving force.

23.1 Writing Controller Specs

A controller spec is a collection of examples of the expected behaviour

for actions on a controller. Whereas views are inherently state-based,

controllers are naturally interaction-based. They wait at the edges of

a Rails app to mediate interaction between models and views given

an incoming request. So we specify their expectations through interac-

tions, process the action, and look at assigned instance variables and

flash messages made available for the view.

In most cases, it’s the interaction between the controller and its collabo-

rators (usually models) that we’re interested in when writing controller

specs. And by default, controller specs don’t render views.1 Combine

that fact with judicious use of mocks and stubs for interaction with

the model, and now we can specify controller interactions in complete

isolation from the other components. This pushes us to build skinny

1. You can tell controller specs to render views with the integrate_views() method.

Prepared exclusively for Simone Joswig

WRITING CONTROLLER SPECS 270

controllers and helps us to discover objects with well named methods

to encapsulate the real work.

A simple guideline for a controller is that it should know what to do,

but not how to do it. Controllers that know too much about the how

tend to become responsible for too many things and as a result become

bloated, messy, and hard understand. This will become clear as we

work through an example.

We’ll use the same Rails app that we used in the last chapter.

Simple Example

In the last chapter we built up the view which contained the form to

create a message. Now we’re going to develop a controller and action

responsible for processing that form submission. The action will also

create the message. We’ll follow Rails’ conventions and make a Mes-

sagesController with a create action.

Start by creating a messages_controller_spec.rb file in the RAILS_ROOT/spec/controllers/

directory. That directory probably doesn’t exist yet, so you may need to

create it. Here is the barebones spec that we’ll start with:

Download rails_controllers/messages/01/spec/controllers/messages_controller_spec.rb

Line 1 require File.expand_path(File.dirname(__FILE__) + '/../spec_helper')
2

3 describe MessagesController, "POST create" do

4

5 it "should build a new message"
6

7 it "should save the message"
8

9 end

The examples on lines 5 and 7 are considered pending because they

have no blocks. You can read more about pending examples in Sec-

tion 10.2, Pending Examples, on page 113.

Run the spec and you should get uninitialized constant MessagesCon-

troller, generated by the reference on line 3 to a non-existent MessagesCon-

troller. Go ahead and create that class in app/controllers/messages_controller.rb,

run the spec again, and now the output should tell you that there are

2 examples, 0 failures, 2 pending.

The first pending example suggests that we want the create() action to

build a new message, so let’s add a block that sets that expectation.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/01/spec/controllers/messages_controller_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=270

WRITING CONTROLLER SPECS 271

Joe Asks. . .

Isn’t Message.should_receive(:new) implementation?

At some level, yes it is, but it’s not the same as specifying internal
implementation details that only occur within the object being
spec’d. We’re specifying the interaction with other objects
in order to isolate this example from anything that might go
wrong, or does not yet exist in the other objects. That way when
a controller spec fails, you know that it’s because the controller
is not behaving correctly and can quickly diagnose the prob-
lem.

One of the motivations for this approach in Rails controller specs
is that we don’t have to worry about changes to model val-
idation rules causing failures in controller specs. Rails fixtures
can also help solve that problem if you use them judiciously.
Test data builders like Fixjour, Factory Girl, Object Daddy and
Machinist can also help. But fixtures and Test Data Builders all
use a database, which slows down the specs, even if they
maintain rapid fault isolation.

Download rails_controllers/messages/02/spec/controllers/messages_controller_spec.rb

it "should build a new message" do

Message.should_receive(:new).with("body" => "a quick brown fox")

post :create, :message => { "body" => "a quick brown fox" }

end

Running the spec should result in a failure since we haven’t added a

create action on the controller. Based on our example we can make this

pass by building a new message in the action:

Download rails_controllers/messages/02/app/controllers/messages_controller.rb

def create

Message.new params[:message]

end

The spec should now be at 2 examples, 0 failures, 1 pending.

Moving right along, the second example suggests that we we want the

controller to save the message. Again, add a block to express the expec-

tation:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/02/spec/controllers/messages_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/02/app/controllers/messages_controller.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=271

WRITING CONTROLLER SPECS 272

Download rails_controllers/messages/02/spec/controllers/messages_controller_spec.rb

it "should save the message" do

message = mock_model(Message)

Message.stub!(:new).and_return message

message.should_receive(:save)

post :create

end

The example should fail with the following message:

Mock 'Message_1001' expected :save with (any args) once, but received it 0 times

To get this to pass all we need to do is call save() on the message:

Download rails_controllers/messages/03/app/controllers/messages_controller.rb

def create

message = Message.new params[:message]

message.save

end

Run the spec again and you’ll see the second example is now passing,

but we broke the first example in the process: 2 examples, 1 failure. There

is no message object in the first example, and there needs to be one for

the code in the action to run.

We can get the first example to pass without impacting the second

example by introducing a mock message:

Download rails_controllers/messages/03/spec/contr . . . rs/messages_controller_refactor1_spec.rb

Line 1 it "should build a new message" do

2 message = mock_model(Message, :save => nil)
3 Message.should_receive(:new).
4 with("body" => "a quick brown fox").
5 and_return(message)
6 post :create, :message => { "body" => "a quick brown fox" }
7 end

Here we create a mock message on line 2 and tell the Message class to

return it in response to new() on line 5.

Run the examples and you’ll see 2 examples, 0 failures.

We’ve made progress, but we’ve also introduced some duplication between

the two examples. We can clean that up by extracting out the common

bits to a before(:each) block:

Download rails_controllers/messages/03/spec/contr . . . rs/messages_controller_refactor2_spec.rb

describe MessagesController, "POST create" do

before(:each) do

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/02/spec/controllers/messages_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/03/app/controllers/messages_controller.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/03/spec/controllers/messages_controller_refactor1_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/03/spec/controllers/messages_controller_refactor2_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=272

WRITING CONTROLLER SPECS 273

@message = mock_model(Message, :save => nil)

Message.stub!(:new).and_return(@message)

end

it "should build a new message" do

Message.should_receive(:new).

with("body" => "a quick brown fox").

and_return(@message)

post :create, :message => { "body" => "a quick brown fox" }

end

it "should save the message" do

@message.should_receive(:save)

post :create

end

end

The spec should still have 2 examples, 0 failures.

Adding context specific examples

Our spec isn’t done though. Controllers typically do different things

depending on whether or not the work they delegate succeeds or fails.

Let’s start with the happy day case and specify what should happen

when the save() succeeds. Add these pending examples after the second

example:

Download rails_controllers/messages/04/spec/controllers/messages_controller_spec.rb

context "when the message saves successfully" do

before(:each) do

@message.stub!(:save).and_return true

end

it "should set a flash[:notice] message"

it "should redirect to the messages index"

end

We use the context() method to express the given context for an exam-

ple or a group of examples.2 By convention, though not enforced pro-

gramatically, we express the same given in a before() block within the

context block. In this case, we’ll stub the save() method, telling it to

return true. This is Rails’ way of indicating that the save() succeeded.

Let’s fill in the code for the first example:

2. context() is an alias for describe()

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/04/spec/controllers/messages_controller_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=273

WRITING CONTROLLER SPECS 274

Download rails_controllers/messages/04/spec/controllers/messages_controller_flash_spec.rb

it "should set a flash[:notice] message" do

post :create

flash[:notice].should == "The message was saved successfully."

end

That example fails because the flash[:notice] is nil. Let’s update the create

action:

Download rails_controllers/messages/05/app/controllers/messages_controller.rb

def create

message = Message.new params[:message]

if message.save

flash[:notice] = "The message was saved successfully."

end

end

That example should be passing now, so let’s move on to the next exam-

ple:

Download rails_controllers/messages/05/spec/contr . . . ers/messages_controller_redirect_spec.rb

it "should redirect to the messages index" do

post :create

response.should redirect_to(messages_path)

end

This example fails with expected redirect to "/messages", got no redirect.

Add the redirect to get it to pass:

Download rails_controllers/messages/06/app/controllers/messages_controller.rb

def create

message = Message.new params[:message]

if message.save

flash[:notice] = "The message was saved successfully."

redirect_to messages_path

end

end

Both happy day examples should be passing. Now we can move on to

the failure case. Add the following failure context to the spec:

Download rails_controllers/messages/06/spec/contr . . . lers/messages_controller_failure_spec.rb

context "when the message fails to save" do

before(:each) do

@message.stub!(:save).and_return false

end

it "should assign @message"

it "should render the new template"

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/04/spec/controllers/messages_controller_flash_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/05/app/controllers/messages_controller.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/05/spec/controllers/messages_controller_redirect_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/06/app/controllers/messages_controller.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/06/spec/controllers/messages_controller_failure_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=274

WRITING CONTROLLER SPECS 275

end

Just like we did before, we express the context in a before() block, but

this time we tell the save() to return false, indicating that the save()

failed.

Run the spec and you should see 6 examples, 0 failures, 2 pending. Let’s

fill in the first pending example:

Download rails_controllers/messages/06/spec/contr . . . llers/messages_controller_assign_spec.rb

it "should assign @message" do

post :create

assigns[:message].should == @message

end

The assigns() method allows us to peek at instance variables assigned

to the view. Normally, we wouldn’t encourage peeking at the internal

state of an object, but Rails’ controllers reach directly into views to set

their state instead of using public methods that we could capture with

message expectations. So, we’ll make an exception to this guideline in

order to ensure that our expectations are being met.

This example fails saying it expected a Message object, but got nil. Let’s

update the action to make it pass:

Download rails_controllers/messages/07/app/controllers/messages_controller.rb

def create

@message = Message.new params[:message]

if @message.save

flash[:notice] = "The message was saved successfully."

redirect_to messages_path

end

end

6 examples, 0 failures, 1 pending. Now let’s fill out the last example:

Download rails_controllers/messages/07/spec/contr . . . sages_controller_render_template_spec.rb

it "should render the new template" do

post :create

response.should render_template("new")

end

This example fails with expected "new", got "messages/create". We can get

this to pass by rendering the new action. Let’s update the create action:

Download rails_controllers/messages/08/app/controllers/messages_controller.rb

def create

@message = Message.new params[:message]

if @message.save

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/06/spec/controllers/messages_controller_assign_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/07/app/controllers/messages_controller.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/07/spec/controllers/messages_controller_render_template_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/08/app/controllers/messages_controller.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=275

WRITING CONTROLLER SPECS 276

flash[:notice] = "The message was saved successfully."

redirect_to messages_path

else

render :action => "new"

end

end

6 examples, 0 failures (none pending)! Now we’ve got a fully implemented

controller action. While it’s fresh in our heads let’s reflect on the spec

and the action.

What we just did

The create() action we just implemented is pretty typical of a Rails app.

The controller passes the params it receives to the model, delegating

the real work. By specifying the interactions with the model instead of

the result of the model’s work, we are able to keep the spec and the

implementation simple and readable.

This is what it means to have a controller know what to do without

knowing the details of how to do it. Any complexity related to building

a message will be specified and implemented in the Message model.

The spec we used to drive this action into existence can be used to

illustrate some basic conventions we like to follow for controller specs:

Directory organization The directory structure for controller specs par-

allels the directory structure found in RAILS_ROOT/app/controllers/.

File naming Each controller spec is named after the controller it pro-

vides examples for, with _spec.rb appended to the filename. For

example, sessions_controller_spec.rb contains the specs for sessions_controller.rb.

Always require spec_helper.rb Each controller spec should require the

spec_helper.rb file, which sets up the environment with all the right

example group classes and utility methods.

Example group names The docstring passed to the outer-most describe()

block in a controller spec typically includes the type of request and

the action the examples are for.

While spec-driving the create() action we focused on one example at a

time. Once each example passed, we looked for and extracted any dupli-

cation to a before block, allowing each example to stay focused, clear,

and DRY. And when we found examples that pertained to a given con-

text, we used context blocks with clear descriptions to organize them.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=276

WRITING CONTROLLER SPECS 277

This spec also introduced a number of methods which provide a good

foundation for writing controller specs. Many of these methods come

directly from ActionController::TestCase, which Rails uses for functional

tests. Let’s look a closer at each of the methods we used.

assigns()

We use the assigns() method to specify the instance variables we expect

to be assigned in the view. It takes a single argument—a symbol that

indicates the name of the instance variable.

Note that the assigns() method available in controller specs is different

from the one available in view specs. In view specs assigns() is used

to set instance variables for a view before rendering the view. In con-

troller specs we use assigns() to set expectations about instance vari-

ables assigned for the view after calling the controller action.

flash()

We use the flash() method to specify messages we expect to be stored

in the flash hash. It uses the same API to access flash in the spec as

you would use in the controller, which makes it convenient and easy to

remember when working with flash.

post()

We use the post() method to simulate a POST request. It can take three

arguments. The first argument is the name of the action to call. The

second argument (optional) is a hash of key/value pairs to make up the

params. The third argument (also optional) is a hash of key/value pairs

that make up the session hash for the controller.

no params or session data

post :create

with params

post :create, :id => 2

with params and session data

post :create, { :id => 2 }, { :user_id => 99 }

The post() method comes directly from ActionController::TestCase, which

offers similar methods for get, put, delete, head and even xml_http_request

requests. All but the xml_http_request and its alias, xhr, have the same

signature as the post() method.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=277

WRITING CONTROLLER SPECS 278

The xml_http_request() and xhr() methods introduce one additional argu-

ment to the front: the type of request to make. Then the other argu-

ments are just shifted over. For example:

no params or session data

xhr :get

with params

xhr :get, :id => 2

with params and session data

xhr :get, { :id => 2 }, { :user_id => 99 }

render_template()

We use the render_template() method to specify the template we expect

a controller action to render. It takes a single argument—the path to

the template that we are rendering.

There are three variations to the argument that render_template will

accept. The first way is to pass in the path to the template minus the

RAILS_ROOT/app/views/ portion:

response.should render_template("messages/new")

The second way is a short hand form of the first. If the template being

rendered is a part of the controller being spec’d you can pass in just

the template name:

this will expand to "messages/new" in a MessagesController spec

response.should render_template("new")

As of Rails 2.3 and RSpec 1.2, we can specify the full filename of the

template to be rendered including the filename extension. This lets us

specify that the controller should pick a template in the same way it

does when the app runs. For example, we can set an expectation that

the controller will find and render the messages/new.js.erb template when

making a request for JavaScript:

controller action

def new

respond_to :js, :html

end

in the spec

get :new, :format => "js"

response.should render_template("new.js.erb")

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=278

BEFORE FILTERS 279

redirect_to()

We use the redirect_to() method to specify that the action should redirect

to a pre-defined location. It has the same API as its Rails’ counterpart,

assert_redirected_to().

relying on route helpers

response.should redirect_to(messages_path)

relying on ActiveRecord conventions

response.should redirect_to(@message)

being specific

response.should redirect_to(:controller => "messages", :action => "new")

With the basics under your belt let’s look at some common controller

scenarios that build on what you’ve just done—starting with before fil-

ters.

23.2 Before Filters

Before filters are methods that get executed before controller actions.

They are an incredibly powerful part of the standard Rails toolbox, and

help us to to remove duplication across controllers and actions, change

the path of execution for an incoming request, and even stop a request

dead in its tracks.

We generally don’t specify before filters directly. If a code example spec-

ifies that an anonymous user can not view a given resource, it doesn’t

really care whether authentication is handled directly in the action or

in a before filter. However, specs are interested in the behaviour of a

controller and before filters can drastically impact those. Not taking

them into account can lead to overly verbose and complicated specs.

This will become clear as we work through an example.

Login Required Example

We’re going to update the message functionality we implemented earlier

in this chapter so that you must log in to create a message. Let’s add a

new group of examples with an anonymous user posting to the create

action.

Open the messages_controller_spec.rb file and add the following example

group (beginning with only one example) to the top of the POST create

describe block:

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=279

BEFORE FILTERS 280

Download rails_controllers/messages/09/spec/controllers/messages_controller_spec.rb

describe "anonymous user" do

it "should redirect to the login page" do

post :create

response.should redirect_to(login_path)

end

end

Running the spec should result in 7 examples, 1 failure, with the new

example being the failure. The current controller implementation doesn’t

care whether a user is anonymous or authenticated. Let’s fix this by

adding a login_required() before filter:

Download rails_controllers/messages/10/app/controllers/messages_controller.rb

class MessagesController < ApplicationController

before_filter :login_required

def create

@message = Message.new params[:message]

if @message.save

flash[:notice] = "The message was saved successfully."

redirect_to messages_path

else

render :action => "new"

end

end

protected

def login_required

unless current_user

redirect_to login_path

false

end

end

end

7 examples, 7 failures. Whoops! We broke all of the examples—undefined

local variable or method ‘current_user’. The very last thing we changed in

the code was addition of the login_required() before filter. Based on how

before filters work we know these failures were expected given the addi-

tion of login_require(). To address the additional failures we’ll need to

make those examples aware of the login requirement. Knowing the rea-

son behind the failures and having a solid grasp of what we’ll need to

do to fix them, we can confidently progress forward with the current

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/09/spec/controllers/messages_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/10/app/controllers/messages_controller.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=280

BEFORE FILTERS 281

example while letting the others stay red—just until we gets the latest

example passing.

We need a current_user() method to represent a logged in user. If we

had a login process in place we could rely on it to tell us how to

represent a logged in user. Since we don’t, let’s make the decision

to allow the controller to access a logged in user via a current_user()

method. Add an empty current_user() method to the controller to satisfy

the login_required() before filter:

Download rails_controllers/messages/11/app/controllers/messages_controller.rb

class MessagesController < ApplicationController

before_filter :login_required

def create

@message = Message.new params[:message]

if @message.save

flash[:notice] = "The message was saved successfully."

redirect_to messages_path

else

render :action => "new"

end

end

protected

def login_required

unless current_user

redirect_to login_path

false

end

end

def current_user

end

end

Run the spec again—the anonymous user example is still failing. There’s

no login_path() method. Update the routes to map a login_path:

Download rails_controllers/messages/11/config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.login '/login', :controller => 'sessions', :action => 'new'

map.resources :messages

end

This change puts us at 7 examples, 6 failures, with our anonymous user

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/11/app/controllers/messages_controller.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/11/config/routes.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=281

BEFORE FILTERS 282

example passing! In getting this to pass we found a need for the Ses-

sionsController, which we currently don’t have in the app. When driving

functionality outside-in with Cucumber we wouldn’t be able to get the

scenario to pass without implementing the login process. For now our

focus isn’t on the login process. It’s on creating a message. Let’s keep

moving forward without shifting focus.

Fixing what we broke

At this point the anonymous user example is passing and there is one

more anonymous user example we need to add, but first let’s fix the fail-

ing examples. The examples that are failing now represent what hap-

pens when an authenticated user POSTS to the create action. To get

these examples passing again we need to stub the current_user() method

on the controller to return a user. Let’s add the stub to the before:

Download rails_controllers/messages/12/spec/controllers/messages_controller_spec.rb

before(:each) do

controller.stub!(:current_user).and_return mock_model(User)

@message = mock_model(Message, :save => nil)

Message.stub!(:new).and_return @message

end

Running the spec now should result in the examples still failing—

uninitialized constant User. Let’s add a User model in the in app/models/user.rb:

Download rails_controllers/messages/12/app/models/user.rb

class User

end

Run the spec again—7 examples, 1 failure. We’ve fixed the failing exam-

ples, but now we’ve made the anonymous user example fail. Oops! Up

until now our original examples have lived in the top-level describe. Its

before block is being used for our anonymous user examples. We don’t

want that, so let’s wrap the original examples in their own describe

block. This will push them down one level of nesting, and it will com-

municate that these examples are for authenticated users. You should

end up with the two describe blocks at the same level of nesting in the

spec:

describe MessagesController, "POST create" do

describe "anonymous user" do

...

end

describe "authenticated user" do

...

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/12/spec/controllers/messages_controller_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/12/app/models/user.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=282

BEFORE FILTERS 283

end

end

The spec should be back to green, 7 examples, 0 failures. The path we

took to get the spec back to green had us work with a red bar for a

hot minute. Knowing why the examples broke gave us confidence to get

the new example passing first before addressing the broken examples.

If we didn’t have that understanding we would have stopped, undone

our changes, and then proceeded with smaller steps.

Adding another anonymous user example

Now that we’ve got a green bar let’s add that second anonymous user

example. Not only do we want an anonymous user to be redirected, we

also want to make sure the create action is never run. We know that

it won’t be executed since we’ve implemented it as a before filter, but

there’s nothing in our spec communicating that as expected behaviour.

Let’s add it as an example to the anonymous user describe:

Download rails_controllers/messages/12/spec/controllers/messages_controller_spec.rb

describe "anonymous user" do

it "should redirect to the login page" do

post :create

response.should redirect_to(login_path)

end

it "should not execute the #create action" do

controller.should_not_receive(:create)

post :create

end

end

You might be wondering if this latest example is necessary. Isn’t it just

confirming how before filters work in Rails? No, it isn’t. The example

specifies the expectation that an anonymous user should not be able

to execute the create action. This is a pretty important expectation,

without it anonymous users could wreak havoc upon the app creating

unauthorized messages! Making the behaviour explicit in the spec also

has the added benefit of providing regression against future controller

changes.

With this latest example you should have 8 examples, 0 failures. The create

action is now only accessible to authenticated users. The spec is looking

good, but let’s make a minor refactoring the implementation. Authenti-

cation usually isn’t restricted to one controller and even though we’re

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/12/spec/controllers/messages_controller_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=283

BEFORE FILTERS 284

only using it in one controller it makes it easier to find and re-use if we

push the current_user() and login_required() methods down to Application-

Controller. Do that now:

Download rails_controllers/messages/13/app/controllers/application.rb

class ApplicationController < ActionController::Base

helper :all # include all helpers, all the time

protect_from_forgery # :secret => '71534792e644ba098610c70211b734e5'

protected

def login_required

unless current_user

redirect_to login_path

false

end

end

def current_user

end

end

Run the examples again just to make sure we didn’t break anything—8

examples, 0 failures.

Extracting a login helper

Currently we have only one action requiring an authenticated user.

When building an app it usually doesn’t take long for additional actions

to also require an authenticated user. It will become tedious and redun-

dant typing the same line into the before block of every controller spec

that requires an authenticated user. Not to mention it’d be very time

consuming to have to change every one of those lines should the login

process in the app change how it exposes authenticated users.

Let’s extract the simple stub that represents a logged in user to a spec

helper. This will improve the readability of our specs and have one point

of change should the login process be updated.

Create the spec/spec_helpers/controllers/ directory and add to it the login_helpers.rb

file. Add a ControllerHelpers module with a login_as_user() method. Copy

the line from the before block in the messages_controller_spec.rb that logs

in a user to this method. It should look like this:

Download rails_controllers/messages/13/spec/spec_helpers/controllers/login_helpers.rb

module ControllerHelpers

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/13/app/controllers/application.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/13/spec/spec_helpers/controllers/login_helpers.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=284

SPEC’ING APPLICATIONCONTROLLER 285

def login_as_user

controller.stub!(:current_user).and_return mock_model(User)

end

end

You’ll need to update spec/spec_helper.rb to include the ControllerHelpers

module so its available in any controller spec. Let’s do that now:

Download rails_controllers/messages/13/spec/spec_helper.rb

Spec::Runner.configure do |config|

config.include Webrat::Matchers, :type => :view

config.include Webrat::HaveTagMatcher, :type => :view

config.include ViewMatchers, :type => :view

config.include ControllerHelpers, :type => :controller

end

In the last chapter we had updated the spec_helper.rb to include all ruby

files in the spec/spec_helpers/ directory. Because of this, the login_helpers.rb

file will be loaded automatically for us. Now we can update the before

block in messages_controller_spec.rb to rely on the login_as_user() method:

Download rails_controllers/messages/13/spec/controllers/messages_controller_spec.rb

before(:each) do

login_as_user

@message = mock_model(Message, :save => nil)

Message.stub!(:new).and_return @message

end

Running the spec should still result in 8 examples, 0 failures. That was an

easy update and now we’ve got a well-named spec helper that can be

easily re-used in other controller examples!

23.3 Spec’ing ApplicationController

Most of the time the behaviour you add to a controller is exposed

directly through an action. However, there are times when you need to

introduce behaviour which is applied to every controller and invoked

indirectly. Perhaps you’re adding an around filter which logs every

incoming request processed by the app. Or maybe you’re adding appli-

cation wide error handling. In either case, specifying these behaviours

one action at a time can be quite tedious. So let’s explore a technique

which works well to keep us moving forward swiftly and confidently.

We’re going to add uniform error handling for AccessDenied exceptions

in the app we’ve been working on. Create spec/controllers/application_controller_spec.rb

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/13/spec/spec_helper.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/13/spec/controllers/messages_controller_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=285

SPEC’ING APPLICATIONCONTROLLER 286

with the following contents:

Download rails_controllers/messages/14/spec/controllers/application_controller1_spec.rb

require File.dirname(__FILE__) + '/../spec_helper'

describe ApplicationController, "handling AccessDenied exceptions" do

it "should redirect to the /401.html (access denied) page"

end

At this point we’ve got 1 example, 0 failures, 1 pending. To express what we

want to happen let’s add an example that simply calls an action:

Download rails_controllers/messages/14/spec/controllers/application_controller2_spec.rb

describe ApplicationController, "handling AccessDenied exceptions" do

it "should redirect to the /401.html (access denied) page" do

get :index

response.should redirect_to('/401.html')

end

end

This spec should fail with

No route matches {:action=>"index", :controller=>"application"}

In most controller specs we write examples for controllers used directly

in the app. Here we are going to specify behaviour of every controller’s

superclass, ApplicationController, which isn’t exposed to the app.

One common approach is to create a controller right in the spec. In

this case we need an index action, so we’ll add that to the controller,

programming it raise the AccessDenied error that we’re expecting in the

example.

Download rails_controllers/messages/14/spec/controllers/application_controller3_spec.rb

describe ApplicationController, "handling AccessDenied exceptions" do

class FooController < ApplicationController

def index

raise AccessDenied

end

end

it "should redirect to the /401.html (access denied) page" do

get :index

response.should redirect_to('/401.html')

end

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/14/spec/controllers/application_controller1_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/14/spec/controllers/application_controller2_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/14/spec/controllers/application_controller3_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=286

SPEC’ING APPLICATIONCONTROLLER 287

Now it fails with uninitialized constant ApplicationController::AccessDenied.

We can get past this by adding an AccessDenied exception. Add it in

RAILS_ROOT/lib/access_denied.rb:

Download rails_controllers/messages/14/lib/access_denied.rb

class AccessDenied < StandardError

end

Now we’re back to the earlier failure—No route matches {:action=>"index",

:controller=>"application"}. It’s trying to call index() on ApplicationController.

We want to call it on FooController. We can use rspec-rails’ controller_name()

method to tell the examples to do just that:

Download rails_controllers/messages/14/spec/controllers/application_controller4_spec.rb

describe ApplicationController, "handling AccessDenied exceptions" do

class FooController < ApplicationController

def index

raise AccessDenied

end

end

controller_name 'foo'

it "should redirect to the /401.html (access denied) page" do

get :index

response.should redirect_to('/401.html')

end

end

No route matches {:action=>"index", :controller=>"foo"}. This is similar to the

failure we got before, but now it is trying to hit the index action on

the FooController. The failure message is correct. There is no route to

the FooController as it just exists in our spec. We can update the routes

for the sake of our spec to map routes for the FooController. Add the

following before to the spec:

Download rails_controllers/messages/14/spec/controllers/application_controller5_spec.rb

describe ApplicationController, "handling AccessDenied exceptions" do

class FooController < ApplicationController

def index

raise AccessDenied

end

end

controller_name 'foo'

before(:each) do

ActionController::Routing::Routes.draw do |map|

map.resources :foo

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/14/lib/access_denied.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/14/spec/controllers/application_controller4_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/14/spec/controllers/application_controller5_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=287

SPEC’ING APPLICATIONCONTROLLER 288

end

after(:each) do

ActionController::Routing::Routes.reload!

end

it "should redirect to the /401.html (access denied) page" do

get :index

response.should redirect_to('/401.html')

end

end

This fixed the spec—1 example, 0 failures—but we’re not quite done yet.

Drawing new routes has a side-effect that we don’t want—it overwrites

any previous routes drawn. While this doesn’t affect this spec it will

affect any controller specs that run after it, such as when you run

multiple specs at the same time with rake spec. All you need to do is

add a after(:each) block which reloads the routes:

Download rails_controllers/messages/14/spec/controllers/application_controller5_spec.rb

describe ApplicationController, "handling AccessDenied exceptions" do

class FooController < ApplicationController

def index

raise AccessDenied

end

end

controller_name 'foo'

before(:each) do

ActionController::Routing::Routes.draw do |map|

map.resources :foo

end

end

after(:each) do

ActionController::Routing::Routes.reload!

end

it "should redirect to the /401.html (access denied) page" do

get :index

response.should redirect_to('/401.html')

end

end

The spec should still be at 1 example, 0 failures. The techniques we applied

here work great for specifying behaviour that is applied across the

entire controller landscape. You will most likely not rely on these tech-

niques that often, but when you find an appropriate situation you’ll

have a technique that can save time, effort, and still give you confi-

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/14/spec/controllers/application_controller5_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=288

SENDING EMAILS 289

Joe Asks. . .

How can I spec file uploads?

From the controller’s perspective an uploaded file is nothing
more than another parameter in the params hash that gets
passed through to a model. There’s nothing interesting about
the uploaded file to spec in a controller. And since uploading
files involve integrating controllers, models, the database, and
even the file system—we encourage you to rely on Cucumber
and Webrat to provide that level of integration.

However, it is possible to utilize a controller spec to provide the
necessary integration to spec file uploads. And while we don’t
encourage this it’s a technique you should be aware of.

Rails’ provides a ActionController::TestUploadedFile class which
can be used to represent an uploaded file in the params hash
of a controller spec. Here’s a sample spec which does that:

describe UsersController, "POST create" do
after do

if files are stored on the file system
be sure to clean them up

end

it "should be able to upload a user's avatar image" do
image = fixture_path + "/test_avatar.png"
file = ActionController::TestUploadedFile.new image, "image/png"
post :create, :user => { :avatar => file }
User.last.avatar.original_filename.should == "test_avatar.png"

end
end

This spec would require that you have a test_avatar.png image
in the RAILS_ROOT/spec/fixtures directory. It would take that file,
upload it to the controller, and the controller would create and
save a real User model.

dence that controllers are working as expected.

23.4 Sending Emails

Spec’ing a controller action that sends an email is a lot like spec’ing an

action that creates a model. After all a mailer is just another collabora-

tor that a controller interacts with. Mailers themselves are best spec’d

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=289

CUSTOM MACROS 290

in isolation, which the (as yet) unwritten chp.railsMiscStuff will cover.

When you need to implement an action that will send email you should

fall back to the same techniques we applied when implementing the

create action on the MessagesController. It will lead to interaction-based

examples like this:

describe UsersController, "POST create" do

before(:each) do

@user = mock_model(User)

User.stub!(:new).and_return @user

UserMailer.stub!(:deliver_confirmation)

end

it "should send a confirmation email to the user" do

UserMailer.should_receive(:deliver_confirmation).with(@user)

post :create

end

...

end

23.5 Custom Macros

As an application grows, we find ourselves having similar expectations

on different controllers and actions. We apply before filters to many con-

troller and actions, and we find ourselves repetitively typing the same

expectations for several specs. When we notice these patterns in our

specs, we can introduce custom macros and matchers to reduce dupli-

cation and produce more expressive examples.

should_require_login() Macro

Earlier in this chapter we introduced the application requirement that

only authenticated users could create a message. Let’s apply the same

requirement to the new action on the MessagesController. Add the follow-

ing examples to your messages_controller_spec.rb:

Download rails_controllers/messages/15/spec/controllers/messages_controller_spec.rb

describe MessagesController, "GET new" do

describe "anonymous user" do

it "should redirect to the login page" do

get :new

response.should redirect_to(login_path)

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/15/spec/controllers/messages_controller_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=290

CUSTOM MACROS 291

Isolation and Integration Modes

Controller specs use a custom example group, which works in
Isolation mode by default. This supports specifying controllers in
isolation from the views that they render. By stubbing out the
model layer as well, we can drive out controllers in complete
isolation from views, models, and the database.

This keeps the controller specs lean, not having to manage a
spiderweb of dependencies in the view or the model. It also
provides quick fault isolation. You’ll always know that a failing
controller spec means that the controller is not behaving cor-
rectly.

The view templates do need to exist, but they can be empty,
or broken, and the controller specs will pass as long as the con-
troller is doing its job.

If you’re more comfortable with the views being rendered, you
can use the Integration mode, which allows the controller to
render views. Just tell the example group to integrate views with
the integrate_views() method:

describe MessagesController do
integrate_views
...

In this mode, controller specs are like Rails functional tests—one
set of examples for both controllers and views. The benefit of
this approach is that you get wider coverage from each spec.
Experienced Rails developers may find this an easier approach
to begin with, however we encourage you to explore using the
isolation mode and revel in its benefits.

it "should not call the #new action" do

controller.should_not_receive(:new)

get :new

end

end

describe "authenticated user" do

before(:each) do

login_as_user

@message = mock_model(Message)

Message.stub!(:new).and_return @message

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=291

CUSTOM MACROS 292

it "should build a message" do

Message.should_receive(:new)

get :new

end

it "should assign @message" do

get :new

assigns[:message].should == @message

end

it "should render the new template" do

get :new

response.should render_template("new")

end

end

end

With these examples the spec have 13 examples, 0 failures. Take a minute

to look over the entire spec. You’ll notice that the anonymous user

examples for both the create action and the new actions are very sim-

ilar except for the action we process. Let’s remove this duplication by

pulling out the pattern to a should_require_login() macro.

Start by creating a macros.rb file in the spec/spec_helpers/controllers/ direc-

tory with the following contents:

Download rails_controllers/messages/15/spec/spec_helpers/controllers/macros.rb

module ControllerMacros

def should_require_login

end

end

Macros are normal methods which are executed at the same level as

it() or before(). We can take advantage of this to wrap the creation of

examples behind a simple method. This will become clear as we work

this example. Let’s focus on the anonymous user examples for the new

action first. Copy and paste those examples, describe block etc., in our

should_require_login() method:

Download rails_controllers/messages/15/spec/spec_helpers/controllers/macros2.rb

def should_require_login

describe "anonymous user" do

it "should redirect to the login page" do

get :new

response.should redirect_to(login_path)

end

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/15/spec/spec_helpers/controllers/macros.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/15/spec/spec_helpers/controllers/macros2.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=292

CUSTOM MACROS 293

it "should not call the #new action" do

controller.should_not_receive(:new)

get :new

end

end

end

Now add a call to the should_require_login() macro in the spec right above

the anonymous user examples we just copied:

Download rails_controllers/messages/15/spec/contr . . . rs/messages_controller_refactor2_spec.rb

describe MessagesController, "GET new" do

should_require_login

describe "anonymous user" do

Running the spec should result in an error—undefined local variable or

method ’should_require_login’. We need to configure rspec to make our

macros accessible to controller specs. Update spec_helper.rb to have the

config extend our ControllerMacros module for controllers:

Download rails_controllers/messages/15/spec/spec_helper.rb

Spec::Runner.configure do |config|

config.include Webrat::Matchers, :type => :view

config.include Webrat::HaveTagMatcher, :type => :view

config.include ViewMatchers, :type => :view

config.include ControllerHelpers, :type => :controller

config.extend ControllerMacros, :type => :controller

end

Here we used config.extend rather than config.include. We did this because

include is used to include methods that can be used within an it() exam-

ple whereas extend is used to make methods available when defining

spec. See Chapter 15, Extending RSpec, on page 177 chapter for more

information on extending rspec.

The spec should now have 15 examples, 0 failures. The should_require_login()

macro is working! Go ahead an remove the original anonymous user

examples in the spec and run the spec. You should be back to 13 exam-

ples, 0 failures.

Currently the should_require_login() macro is hard coded to make a GET

request for the new action. We’ll need to make it more flexible so we

can use it for other actions as well, such as the create action. Let’s

parameterize the macro (e.g. should_require_login(:get, :new)) so it will be

able to work for any request method and any action. Go ahead and

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/15/spec/controllers/messages_controller_refactor2_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/15/spec/spec_helper.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=293

CUSTOM MACROS 294

change the macro to accept two parameters—the request method and

the action to call:

Download rails_controllers/messages/15/spec/spec_helpers/controllers/macros3.rb

def should_require_login(request_method, action)

Next, update the macro body to rely on those parameters. Let’s replace

the hard-coded references to :new and calls to get with the parameters

that are being passed in. Passing the request method in as a param-

eter provides a challenge for us though. How can we invoke it as a

method call? Fortunately, Ruby solves this problem for us. We can rely

on Ruby’s send() method to invoke it:

Download rails_controllers/messages/15/spec/spec_helpers/controllers/macros4.rb

def should_require_login(request_method, action)

describe "anonymous user" do

it "should redirect to the login page" do

send request_method, action

response.should redirect_to(login_path)

end

it "should not call the #{action} action" do

controller.should_not_receive(action)

send request_method, action

end

end

end

Running the spec should fail—‘should_require_login’: wrong number of argu-

ments (0 for 2). Update the spec to pass in the parameters we just added

to our macro:

Download rails_controllers/messages/15/spec/contr . . . rs/messages_controller_refactor3_spec.rb

should_require_login :get, :new

The spec is now back to 13 examples, 0 failures. Now let’s update the POST

create example to use the macro. Add a call to the macro at the top of

its describe:

Download rails_controllers/messages/15/spec/contr . . . rs/messages_controller_refactor4_spec.rb

should_require_login :post, :create

The spec is still green with 15 examples, 0 failures. Go ahead and remove

the anonymous user describe block and run the spec—13 examples, 0 fail-

ures.

That’s it! You now have a controller macro under your belt. And you can

apply what we did here in any situation where you discover a pattern

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/15/spec/spec_helpers/controllers/macros3.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/15/spec/spec_helpers/controllers/macros4.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/15/spec/controllers/messages_controller_refactor3_spec.rb
http://media.pragprog.com/titles/achbd/code/rails_controllers/messages/15/spec/controllers/messages_controller_refactor4_spec.rb
http://books.pragprog.com/titles/achbd/errata/add?pdf_page=294

WHAT WE JUST LEARNED 295

emerging from the specs.

23.6 What We Just Learned

• Controllers coordinate the interaction between the user and the

application and should know what to do, but not how to do it.

• Specifying the desired interaction helps us to discover objects with

well named methods to encapsulate the real work.

• Controller specs use a custom example group provided by the

rspec-rails library.

• Controller specs live in a directory tree parallel to the controllers

themselves, and follow a naming convention of spec/controllers/my_controller_spec.rb

for app/controllers/my_controller.rb.

• Use the redirect_to() matcher to confirm redirects.

• Use the render_template() matcher to confirm the template being

rendered.

• Use the assigns() method to confirm the instance variables assigned

for the view.

• Use the flash() method to confirm the flash messages stored for the

view.

• Use mock_model() and stub_model() to isolate controller specs from

the database and underlying business logic of your models.

• Extract spec helpers and custom macros to help keep your con-

troller specs DRY.

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=295

Chapter 24

Rails Models
Coming soon ...

Prepared exclusively for Simone Joswig

Appendix A

RubySpec
Coming soon ...

Prepared exclusively for Simone Joswig

Appendix B

RSpec’s Built-In Expectations
Here is a summary of all of the expectations that are supported directly

by RSpec.

Equality

Expression Passes if ...

actual.should equal(expected) actual.equal?(expected)

actual.should eql(expected) actual.eql?(expected)

actual.should == expected actual == expected

actual.should === expected actual === expected

Expression Passes unless ...

actual.should_not equal(expected) actual.equal?(expected)

actual.should_not eql(expected) actual.eql?(expected)

actual.should_not == expected actual == expected

actual.should_not === expected actual === expected

Prepared exclusively for Simone Joswig

APPENDIX B. RSPEC’S BUILT -IN EXPECTATIONS 299

Arbitrary Predicates

Expression Passes if ...

actual.should be_[predicate] actual.predicate?

actual.should be_a_[predicate] actual.predicate?

actual.should be_an_[predicate] actual.predicate?

Expression Passes if ...

actual.should be_[predicate](*args) actual.predicate?(*args)

actual.should be_a_[predicate](*args) actual.predicate?(*args)

actual.should be_an_[predicate](*args) actual.predicate?(*args)

Expression Passes unless ...

actual.should_not be_[predicate] actual.predicate?

actual.should_not be_a_[predicate] actual.predicate?

actual.should_not be_an_[predicate] actual.predicate?

Expression Passes unless ...

actual.should_not be_[predicate](*args) actual.predicate?(*args)

actual.should_not be_a_[predicate](*args) actual.predicate?(*args)

actual.should_not be_an_[predicate](*args) actual.predicate?(*args)

Regular Expressions

Expression Passes if ...

actual.should match(expected) actual.match?(expected)

actual.should =~ expected actual =~ expected

Expression Passes unless ...

actual.should_not match(expected) actual.match?(expected)

actual.should_not =~ expected actual =~ expected

Comparisons

Expression Passes if ...

actual.should be < expected actual < expected

actual.should be <= expected actual <= expected

actual.should be >= expected actual >= expected

actual.should be > expected actual > expected

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=299

APPENDIX B. RSPEC’S BUILT -IN EXPECTATIONS 300

Collections

Expression Passes if ...

actual.should include(expected) actual.include?(expected)

actual.should have(n).items actual.items.length == n or actual.items.size == n

actual.should have_exactly(n).items actual.items.length == n or actual.items.size == n

actual.should have_at_least(n).items actual.items.length >= n or actual.items.size >= n

actual.should have_at_most(n).items actual.items.length <= n or actual.items.size <= n

Expression Passes unless ...

actual.should_not include(expected) actual.include?(expected)

actual.should_not have(n).items actual.items.length == n or actual.items.size == n

actual.should_not have_exactly(n).items actual.items.length == n or actual.items.size == n

Errors

Expression Passes if ...

proc.should raise_error proc raises any error

proc.should raise_error(type) raises specified type of error

proc.should raise_error(message) raises error with specified message

proc.should raise_error(type, message) raises specified type of error with specified message

Expression Passes unless ...

proc.should_not raise_error proc raises any error

proc.should_not raise_error(type) raises specified type of error

proc.should_not raise_error(message) raises error with specified message

proc.should_not raise_error(type, message) raises specified type of error with specified message

Symbols

Expression Passes if ...

proc.should throw_symbol proc throws any symbol

proc.should throw_symbol(type) proc throws specified symbol

Expression Passes unless ...

proc.should_not throw_symbol proc throws any symbol

proc.should_not throw_symbol(type) proc throws specified symbol

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=300

APPENDIX B. RSPEC’S BUILT -IN EXPECTATIONS 301

Floating Point Comparisons

Expression Passes if ...

actual.should be_close(expected, delta) actual < (expected + delta) or > (expected - delta)

Expression Passes unless ...

actual.should_not be_close(expected, delta) actual < (expected + delta) or > (expected - delta)

Duck Typing

Expression Passes if ...

actual.should respond_to(*messages) messages.each { |m| m.respond_to?(m) }

Expression Passes unless ...

actual.should_not respond_to(*messages) messages.each { |m| m.respond_to?(m) }

When All Else Fails...

Expression Passes if ...

actual.should satisfy { |actual| block } the block returns true

Expression Passes unless ...

actual.should_not satisfy { |actual| block } the block returns true

Report erratum

this copy is (B4.0 printing, April 13, 2009)
Prepared exclusively for Simone Joswig

http://books.pragprog.com/titles/achbd/errata/add?pdf_page=301

Appendix C

Bibliography

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-

Wesley, Reading, MA, 2002.

[Coh04] Mike Cohn. User Stories Applied: For Agile Software Devel-

opment. Boston, MA, Addison-Wesley Professional, 2004.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and

Don Roberts. Refactoring: Improving the Design of Existing

Code. Addison Wesley Longman, Reading, MA, 1999.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Mar02] Robert C. Martin. Agile Software Development, Principles,

Patterns, and Practices. Prentice Hall, Englewood Cliffs, NJ,

2002.

[MRB97] Robert C. Martin, Dirk Riehle, and Frank Buschmann. Pat-

tern Languages of Program Design 3. Addison-Wesley Pro-

fessional, Boston, MA, 1997.

[Rai04] J. B. Rainsberger. JUnit Recipes : Practical Methods for Pro-

grammer Testing. Manning Publications Co., Greenwich, CT,

2004.

Prepared exclusively for Simone Joswig

Index

Prepared exclusively for Simone Joswig

More Books go here...

Prepared exclusively for Simone Joswig

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
The RSpec Book’s Home Page

http://pragprog.com/titles/achbd

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/achbd.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Prepared exclusively for Simone Joswig

http://pragprog.com/titles/achbd
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/achbd
www.pragprog.com/catalog

	Contents
	Important Information for Beta Readers
	Changes
	Beta 4.0---April 13, 2009

	Preface
	Getting Started with RSpec and Cucumber
	Introduction
	Test Driven Development: Where it All Started
	Behaviour Driven Development: The Next Step
	RSpec
	Cucumber
	The BDD Cycle

	Describing Features with Cucumber
	Selecting Stories for the First Iteration
	Deriving Features from Stories
	Automating Acceptance Criteria
	Steps and Step Definitions
	What We Just Did

	Describing Code with RSpec
	Red: Start With a Failing Code Example
	Green: Get the Example To Pass
	Refactor to Remove Duplication
	What We Just Did

	Adding New Features
	Scenario Outlines
	Responding to Change
	The Simplest Thing
	Examples are Code Too
	Exploratory Testing
	What We Just Did

	Evolving Existing Features
	Adding New Scenarios
	Managing Increasing Complexity
	Refactoring In the Green
	What we just did

	Random Expectations

	Behaviour Driven Development
	The Case for BDD
	How traditional projects fail
	Why traditional projects fail
	Redefining the problem
	The cost of going Agile
	What have we learned?

	Writing Software that Matters
	Mock Objects

	RSpec
	Code Examples
	Describe It!
	Pending Examples
	Before and After
	Helper Methods
	Shared Examples
	Nested Example Groups

	Expectations
	should and should_not
	Built-In Matchers
	Predicate Matchers
	Have Whatever You Like
	Operator Expressions
	Generated Descriptions
	Subject-ivity

	Mocking in RSpec
	RSpec and Test::Unit
	Running Test::Unit tests with the RSpec runner
	Refactoring Test::Unit Tests to RSpec Code Examples
	What We Just Did

	Tools And Integration
	The 4-1spec Command
	TextMate
	Autotest
	Heckle
	Rake
	RCov

	Extending RSpec
	Global Configuration
	Custom Example Groups
	Custom Matchers
	Macros
	Custom Formatters
	What We've Learned

	Cucumber

	Behaviour Driven Rails
	BDD in Rails
	Traditional Rails Development
	Outside-In Rails Development
	Setting up a Rails project
	What We Just Learned

	Cucumber with Rails
	Working with Cucumber in Rails
	Step Definition Styles
	Direct Model Access

	Simulating the Browser with Webrat
	Writing Simulated Browser Step Definitions
	Navigating to Pages
	Manipulating Forms
	Specifying Outcomes with View Matchers
	Building on the Basics
	Wrapping Up

	Automating the Browser with Webrat
	Rails Views
	Writing View Specs
	Mocking Models
	Working with Partials
	Refactoring Code Examples
	What We Just Learned

	Rails Helpers
	Rails Controllers
	Writing Controller Specs
	Before Filters
	Spec'ing ApplicationController
	Sending Emails
	Custom Macros
	What We Just Learned

	Rails Models
	RubySpec
	RSpec's Built-In Expectations
	Bibliography

	Index

